Suppr超能文献

用于息肉分割的边缘增强网络。

An Edge-Enhanced Network for Polyp Segmentation.

作者信息

Tong Yao, Chen Ziqi, Zhou Zuojian, Hu Yun, Li Xin, Qiao Xuebin

机构信息

School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Bioengineering (Basel). 2024 Sep 25;11(10):959. doi: 10.3390/bioengineering11100959.

Abstract

Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.

摘要

结直肠癌仍然是全球癌症相关死亡的主要原因之一,早期检测和切除息肉对于预防疾病进展至关重要。自动息肉分割,尤其是在结肠镜检查图像中,由于息肉外观的变异性以及息肉与周围组织之间的低对比度,是一项具有挑战性的任务。在这项工作中,我们提出了一种边缘增强网络(EENet),旨在通过集成两个新颖的模块来应对这些挑战:协方差边缘增强注意力(CEEA)模块和跨尺度边缘增强(CSEE)模块。CEEA模块利用基于协方差的注意力来增强边界检测,而CSEE模块桥接多尺度特征以保留细粒度的边缘细节。为了进一步提高息肉分割的准确性,我们引入了一种混合损失函数,将交叉熵损失与边缘感知损失相结合。大量实验表明,EENet在Kvasir-SEG数据集上实现了0.9208的Dice分数和0.8664的IoU,超过了诸如Polyp-PVT和PraNet等先进模型。此外,它在CVC-ClinicDB数据集上记录了0.9316的Dice分数和0.8817的IoU,证明了其在息肉分割临床应用中的强大潜力。消融研究进一步验证了CEEA和CSEE模块的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe6/11504364/14e95caba70e/bioengineering-11-00959-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验