Suppr超能文献

缅甸安镇的疟疾暴露情况与土地覆盖和土地利用的关系:结合卫星地球观测与实地调查

Malaria Exposure in Ann Township, Myanmar, as a Function of Land Cover and Land Use: Combining Satellite Earth Observations and Field Surveys.

作者信息

Hoffman-Hall Amanda, Puett Robin, Silva Julie A, Chen Dong, Baer Allison, Han Kay Thwe, Han Zay Yar, Thi Aung, Htay Thura, Thein Zaw Win, Aung Poe Poe, Plowe Christopher V, Nyunt Myaing Myaing, Loboda Tatiana V

机构信息

Department of Geographical Sciences University of Maryland College Park MD USA.

School of Public Health, Maryland Institute for Applied Environmental Health University of Maryland College Park MD USA.

出版信息

Geohealth. 2020 Dec 1;4(12):e2020GH000299. doi: 10.1029/2020GH000299. eCollection 2020 Dec.

Abstract

Despite progress toward malaria elimination in the Greater Mekong Subregion, challenges remain owing to the emergence of drug resistance and the persistence of focal transmission reservoirs. Malaria transmission foci in Myanmar are heterogeneous and complex, and many remaining infections are clinically silent, rendering them invisible to routine monitoring. The goal of this research is to define criteria for easy-to-implement methodologies, not reliant on routine monitoring, that can increase the efficiency of targeted malaria elimination strategies. Studies have shown relationships between malaria risk and land cover and land use (LCLU), which can be mapped using remote sensing methodologies. Here we aim to explain malaria risk as a function of LCLU for five rural villages in Myanmar's Rakhine State. Malaria prevalence and incidence data were analyzed through logistic regression with a land use survey of ~1,000 participants and a 30-m land cover map. Malaria prevalence per village ranged from 5% to 20% with the overwhelming majority of cases being subclinical. Villages with high forest cover were associated with increased risk of malaria, even for villagers who did not report visits to forests. Villagers living near croplands experienced decreased malaria risk unless they were directly engaged in farm work. Finally, land cover change (specifically, natural forest loss) appeared to be a substantial contributor to malaria risk in the region, although this was not confirmed through sensitivity analyses. Overall, this study demonstrates that remotely sensed data contextualized with field survey data can be used to inform critical targeting strategies in support of malaria elimination.

摘要

尽管大湄公河次区域在疟疾消除方面取得了进展,但由于耐药性的出现和局部传播源的持续存在,挑战依然存在。缅甸的疟疾传播病灶具有异质性和复杂性,许多剩余感染在临床上没有症状,使得它们在常规监测中难以被发现。本研究的目的是确定易于实施的方法标准,不依赖常规监测,以提高有针对性的疟疾消除策略的效率。研究表明疟疾风险与土地覆盖和土地利用(LCLU)之间存在关联,这可以通过遥感方法进行绘制。在这里,我们旨在解释缅甸若开邦五个乡村的疟疾风险与土地覆盖和土地利用之间的函数关系。通过对约1000名参与者的土地利用调查和30米分辨率的土地覆盖图进行逻辑回归分析,对疟疾患病率和发病率数据进行了分析。每个村庄的疟疾患病率从5%到20%不等,绝大多数病例为亚临床病例。森林覆盖率高的村庄与疟疾风险增加有关,即使对于那些没有报告去过森林的村民也是如此。生活在农田附近的村民疟疾风险降低,除非他们直接从事农活。最后,土地覆盖变化(特别是天然森林丧失)似乎是该地区疟疾风险的一个重要因素,尽管这一点在敏感性分析中未得到证实。总体而言,本研究表明,结合实地调查数据的遥感数据可用于为支持疟疾消除的关键目标策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b24d/7752622/4e093445095d/GH2-4-e2020GH000299-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验