Bertoldi Dalía S, Millán Emmanuel N, Fernández Guillermet A
Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina.
CONICET and ITIC, Universidad Nacional de Cuyo, Mendoza, Argentina.
Phys Chem Chem Phys. 2021 Jan 21;23(2):1298-1307. doi: 10.1039/d0cp04442c.
The paper reports the results of a molecular dynamics study of the heating and melting process of nanoparticles with 1985 to 84 703 atoms. Building on a previous study by the present authors [Bertoldi, et al., J. Phys. Chem. Solids, 2017, 111, 286-293] involving the energy versus temperature, the Lindemann index and the radial distribution function, the current work relies on the mean-square displacement, the Lindemann ratio and the simulated snapshots to characterize four regions in the process of heating-to-melting. A general pattern of the atomic configuration evolution upon heating and a systematics of the transition temperatures between the various identified steps, is proposed. In addition, the most significant, so-called "melting step" in this process is analyzed in terms of the quasi-chemical approach proposed by Bertoldi et al., which treats this step by invoking a dynamic equilibrium of the type Au (LEA-SPL) ⇌ Au (HEA-LPL) involving low-energy atoms (LEA) and high-energy atoms (HEA) forming the solid phase-like (SPL) and the liquid phase-like (LPL) states of the system, respectively. The "melting step" is characterized by evaluating the equal-Gibbs energy temperature, i.e., the "T0 temperature", previously introduced by the current authors, which is the thermodynamic counterpart of the temperature of fusion of macroscopic elemental solids. The diffusion coefficients at T0 are determined, and their spatial and temperature dependence is discussed. In particular, the activation energy for the atom movements in the HEA-LPL/LEA-SPL mixture at T0 is reported. The consistency between the current phenomenological picture and microscopic interpretation of the thermodynamic, kinetic and atomic configuration information obtained is highlighted.
该论文报道了对含有1985至84703个原子的纳米颗粒加热和熔化过程的分子动力学研究结果。基于作者之前的一项研究[Bertoldi等人,《固体物理化学杂志》,2017年,111卷,286 - 293页],该研究涉及能量与温度、林德曼指数和径向分布函数,当前工作依赖于均方位移、林德曼比率和模拟快照来表征加热到熔化过程中的四个区域。提出了加热时原子构型演化的一般模式以及各个确定步骤之间转变温度的系统性规律。此外,根据Bertoldi等人提出的准化学方法分析了该过程中最重要的所谓“熔化步骤”,该方法通过调用Au (LEA - SPL) ⇌ Au (HEA - LPL)这种类型的动态平衡来处理这一步骤,其中低能原子(LEA)和高能原子(HEA)分别形成系统的固相类似态(SPL)和液相类似态(LPL)。通过评估等吉布斯能温度,即作者之前引入的“T0温度”来表征“熔化步骤”,它是宏观元素固体熔化温度的热力学对应物。确定了T0时的扩散系数,并讨论了它们的空间和温度依赖性。特别报道了T0时HEA - LPL/LEA - SPL混合物中原子运动的活化能。强调了当前现象学描述与所获得的热力学、动力学和原子构型信息的微观解释之间的一致性。