Suppr超能文献

干预疲劳是导致 COVID-19 大流行中二次浪潮强烈的主要原因。

Intervention Fatigue is the Primary Cause of Strong Secondary Waves in the COVID-19 Pandemic.

机构信息

Department of Mathematics and Statistics, UiT the Arctic University of Norway, 9019 Tromsø, Norway.

出版信息

Int J Environ Res Public Health. 2020 Dec 21;17(24):9592. doi: 10.3390/ijerph17249592.

Abstract

As of November 2020, the number of COVID-19 cases was increasing rapidly in many countries. In Europe, the virus spread slowed considerably in the late spring due to strict lockdown, but a second wave of the pandemic grew throughout the fall. In this study, we first reconstruct the time evolution of the effective reproduction numbers R(t) for each country by integrating the equations of the classic Susceptible-Infectious-Recovered (SIR) model. We cluster countries based on the estimated R(t) through a suitable time series dissimilarity. The clustering result suggests that simple dynamical mechanisms determine how countries respond to changes in COVID-19 case counts. Inspired by these results, we extend the simple SIR model for disease spread to include a social response to explain the number X(t) of new confirmed daily cases. In particular, we characterize the social response with a first-order model that depends on three parameters ν1,ν2,ν3. The parameter ν1 describes the effect of relaxed intervention when the incidence rate is low; ν2 models the impact of interventions when incidence rate is high; ν3 represents the fatigue, i.e., the weakening of interventions as time passes. The proposed model reproduces typical evolving patterns of COVID-19 epidemic waves observed in many countries. Estimating the parameters ν1,ν2,ν3 and initial conditions, such as R0, for different countries helps to identify important dynamics in their social responses. One conclusion is that the leading cause of the strong second wave in Europe in the fall of 2020 was not the relaxation of interventions during the summer, but rather the failure to enforce interventions in the fall.

摘要

截至 2020 年 11 月,许多国家的 COVID-19 病例数量迅速增加。在欧洲,由于严格的封锁,病毒在春末传播速度明显放缓,但疫情在秋季出现了第二波增长。在这项研究中,我们首先通过整合经典的易感-感染-恢复(SIR)模型方程,为每个国家重建有效繁殖数 R(t)的时间演化。我们通过适当的时间序列不相似性,根据估计的 R(t)对国家进行聚类。聚类结果表明,简单的动力学机制决定了各国对 COVID-19 病例数量变化的反应。受这些结果的启发,我们将疾病传播的简单 SIR 模型扩展到包括对解释新确诊日病例数 X(t)的社会反应。特别是,我们用一个依赖于三个参数 ν1、ν2、ν3 的一阶模型来描述社会反应。参数 ν1 描述了发病率低时放松干预的效果;ν2 模型刻画了发病率高时干预的影响;ν3 表示随着时间的推移干预的疲劳,即减弱。所提出的模型再现了许多国家观察到的 COVID-19 疫情波的典型演变模式。估计不同国家的参数 ν1、ν2、ν3 和初始条件,如 R0,有助于识别其社会反应中的重要动态。一个结论是,2020 年秋季欧洲第二波疫情的主要原因不是夏季放松干预,而是秋季未能实施干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703a/7767484/bf07a6e61268/ijerph-17-09592-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验