Suppr超能文献

基于稀疏光谱注意力深度神经网络的高光谱人脸识别。

Hyperspectral face recognition based on sparse spectral attention deep neural networks.

出版信息

Opt Express. 2020 Nov 23;28(24):36286-36303. doi: 10.1364/OE.404793.

Abstract

Inspired by the robust capability and outstanding performance of convolutional neural networks (CNN) in image classification tasks, CNN-based hyperspectral face recognition methods are worthy of further exploration. However, hyperspectral imaging poses new challenges including high data dimensionality and interference between bands on spectral dimension. High data dimensionality can result in high computational costs. Moreover, not all bands are equally informative and discriminative. The usage of a useless spectral band may even introduce noises and weaken the performance. For the sake of solving those problems, we proposed a novel CNN framework, which adopted a channel-wise attention mechanism and Lasso algorithm to select the optimal spectral bands. The framework is termed as the sparse spectral channel-wise attention-based network (SSCANet) where the SSCA-block focuses on the inter-band channel relationship. Different from other methods which usually select the useful bands manually or in a greedy fashion, SSCA-block can adaptively recalibrate spectral bands by selectively emphasizing informative bands and suppressing less useful ones. Especially, a Lasso constraint strategy can zero out the bands during the training of the network, which can boost the training process by making the weights of bands sparser. Finally, we evaluate the performance of the proposed method in comparison of other state-of-the-art hyperspectral face recognition algorithms on three public datasets HK-PolyU, CMU, and UWA. The experimental results demonstrate that SSCANet based method outperforms the state-of-the-art methods for face recognition on the benchmark.

摘要

受卷积神经网络 (CNN) 在图像分类任务中强大功能和卓越性能的启发,基于 CNN 的高光谱人脸识别方法值得进一步探索。然而,高光谱成像是一个新的挑战,包括高数据维度和光谱维度上的波段干扰。高数据维度会导致高计算成本。此外,并非所有波段都具有相同的信息量和可区分性。使用无用的光谱波段甚至可能引入噪声并降低性能。为了解决这些问题,我们提出了一种新的 CNN 框架,该框架采用了通道注意力机制和 Lasso 算法来选择最佳的光谱波段。该框架称为稀疏光谱通道注意力网络(SSCANet),其中 SSCA 块关注波段间的通道关系。与通常手动或贪婪地选择有用波段的其他方法不同,SSCA 块可以通过选择性地强调信息量较大的波段和抑制信息量较小的波段来自适应地重新校准光谱波段。特别是,Lasso 约束策略可以在网络训练过程中将波段置零,从而通过使波段的权重更加稀疏来加速训练过程。最后,我们在三个公共数据集 HK-PolyU、CMU 和 UWA 上与其他最先进的高光谱人脸识别算法进行比较,评估了所提出方法的性能。实验结果表明,基于 SSCANet 的方法在基准测试中的人脸识别性能优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验