Xiong Yuzan, Zhang Zhizhi, Li Yi, Hammami Mouhamad, Sklenar Joseph, Alahmed Laith, Li Peng, Sebastian Thomas, Qu Hongwei, Hoffmann Axel, Novosad Valentine, Zhang Wei
Department of Physics, Oakland University, Rochester, Michigan 48309, USA.
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Rev Sci Instrum. 2020 Dec 1;91(12):125105. doi: 10.1063/5.0023715.
We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttrium iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequency self-generation as well as the related nonlinear processes becomes sensitive to the external magnetic field. Besides being known as a band-pass filter and a delay element, the YIG delay line possesses spin wave modes that can be controlled to mix with the optoelectronic modes to generate higher-order harmonic beating modes. With the high sensitivity and external tunability, the MOEO system may find usefulness in sensing applications in magnetism and spintronics beyond optoelectronics and photonics.
我们报告了基于1550纳米光子学和钇铁石榴石(YIG)磁子学构建并表征的综合磁光电子振荡器(MOEO)系统。由于能够控制单个光子、电子和磁子组件,该系统展现出丰富且协同的参数空间。利用YIG的自旋波色散,频率自生成以及相关的非线性过程对外加磁场变得敏感。除了作为带通滤波器和延迟元件外,YIG延迟线还拥有自旋波模式,可控制其与光电子模式混合以产生高阶谐波拍频模式。凭借高灵敏度和外部可调性,MOEO系统可能在磁学和自旋电子学的传感应用中有用,而不仅仅局限于光电子学和光子学领域。