Suppr超能文献

全国性筛查项目中糖尿病视网膜病变的纵向筛查:深度学习与人工分级比较。

Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human Graders.

机构信息

Department of Ophthalmology, College of Medicine, Rangsit University, Rajavithi Hospital, Bangkok, Thailand.

Department of Ophthalmology, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.

出版信息

J Diabetes Res. 2020 Dec 15;2020:8839376. doi: 10.1155/2020/8839376. eCollection 2020.

Abstract

OBJECTIVE

To evaluate diabetic retinopathy (DR) screening via deep learning (DL) and trained human graders (HG) in a longitudinal cohort, as case spectrum shifts based on treatment referral and new-onset DR.

METHODS

We randomly selected patients with diabetes screened twice, two years apart within a nationwide screening program. The reference standard was established via adjudication by retina specialists. Each patient's color fundus photographs were graded, and a patient was considered as having sight-threatening DR (STDR) if the worse eye had severe nonproliferative DR, proliferative DR, or diabetic macular edema. We compared DR screening via two modalities: DL and HG. For each modality, we simulated treatment referral by excluding patients with detected STDR from the second screening using that modality.

RESULTS

There were 5,738 patients (12.3% STDR) in the first screening. DL and HG captured different numbers of STDR cases, and after simulated referral and excluding ungradable cases, 4,148 and 4,263 patients remained in the second screening, respectively. The STDR prevalence at the second screening was 5.1% and 6.8% for DL- and HG-based screening, respectively. Along with the prevalence decrease, the sensitivity for both modalities decreased from the first to the second screening (DL: from 95% to 90%, = 0.008; HG: from 74% to 57%, < 0.001). At both the first and second screenings, the rate of false negatives for the DL was a fifth that of HG (0.5-0.6% vs. 2.9-3.2%).

CONCLUSION

On 2-year longitudinal follow-up of a DR screening cohort, STDR prevalence decreased for both DL- and HG-based screening. Follow-up screenings in longitudinal DR screening can be more difficult and induce lower sensitivity for both DL and HG, though the false negative rate was substantially lower for DL. Our data may be useful for health-economics analyses of longitudinal screening settings.

摘要

目的

通过深度学习(DL)和训练有素的人工分级器(HG)在纵向队列中评估糖尿病视网膜病变(DR)筛查,因为病例谱会根据治疗转诊和新发病例的 DR 而发生变化。

方法

我们从全国性筛查计划中随机选择了两次筛查间隔两年的糖尿病患者。参考标准是由视网膜专家进行裁决确定的。对每位患者的眼底彩照进行分级,如果较差眼患有严重非增殖性 DR、增殖性 DR 或糖尿病性黄斑水肿,则认为患者患有威胁视力的 DR(STDR)。我们比较了两种模式的 DR 筛查:DL 和 HG。对于每种模式,我们通过排除该模式第二次筛查中已发现的 STDR 患者来模拟治疗转诊。

结果

首次筛查中共有 5738 名患者(12.3%的 STDR)。DL 和 HG 分别捕获了不同数量的 STDR 病例,在模拟转诊并排除无法分级的病例后,第二次筛查中分别有 4148 名和 4263 名患者。第二次筛查的 STDR 患病率分别为 DL 和 HG 筛查的 5.1%和 6.8%。随着患病率的下降,两种模式的敏感性从第一次筛查到第二次筛查都有所下降(DL:从 95%降至 90%, = 0.008;HG:从 74%降至 57%, < 0.001)。在第一次和第二次筛查中,DL 的假阴性率均为 HG 的五分之一(0.5-0.6%比 2.9-3.2%)。

结论

在 DR 筛查队列的 2 年纵向随访中,DL 和 HG 筛查的 STDR 患病率均有所下降。纵向 DR 筛查的后续筛查可能会更加困难,并且会降低 DL 和 HG 的敏感性,但 DL 的假阴性率要低得多。我们的数据可能对纵向筛查环境的健康经济学分析有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b74/7758133/0a4577b402b6/JDR2020-8839376.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验