Suppr超能文献

护理记录症状与家庭护理患者急诊就诊和住院的风险增加相关。

Nursing documentation of symptoms is associated with higher risk of emergency department visits and hospitalizations in homecare patients.

机构信息

Center for Home Care Policy and Research, Visiting Nurse Service of New York, New York, NY; Columbia University School of Nursing, Columbia University Data Science Institute, New York, NY.

University of Pittsburgh School of Nursing, Pittsburgh, PA.

出版信息

Nurs Outlook. 2021 May-Jun;69(3):435-446. doi: 10.1016/j.outlook.2020.12.007. Epub 2020 Dec 29.

Abstract

BACKGROUND

Nurses often document patient symptoms in narrative notes.

PURPOSE

This study used a technique called natural language processing (NLP) to: (1) Automatically identify documentation of seven common symptoms (anxiety, cognitive disturbance, depressed mood, fatigue, sleep disturbance, pain, and well-being) in homecare narrative nursing notes, and (2) examine the association between symptoms and emergency department visits or hospital admissions from homecare.

METHOD

NLP was applied on a large subset of narrative notes (2.5 million notes) documented for 89,825 patients admitted to one large homecare agency in the Northeast United States.

FINDINGS

NLP accurately identified symptoms in narrative notes. Patients with more documented symptom categories had higher risk of emergency department visit or hospital admission.

DISCUSSION

Further research is needed to explore additional symptoms and implement NLP systems in the homecare setting to enable early identification of concerning patient trends leading to emergency department visit or hospital admission.

摘要

背景

护士经常在叙述性护理记录中记录患者的症状。

目的

本研究使用一种称为自然语言处理(NLP)的技术:(1)自动识别家庭护理叙述性护理记录中七种常见症状(焦虑、认知障碍、情绪低落、疲劳、睡眠障碍、疼痛和幸福感)的记录,(2)检查症状与家庭护理中急诊科就诊或住院之间的关联。

方法

NLP 应用于在美国东北部的一家大型家庭护理机构住院的 89825 名患者的大量叙述性记录(250 万条记录)的子集上。

发现

NLP 可以准确识别叙述性记录中的症状。记录的症状类别越多的患者,急诊科就诊或住院的风险越高。

讨论

需要进一步研究以探索其他症状,并在家护理环境中实施 NLP 系统,以尽早识别导致急诊科就诊或住院的患者病情变化趋势。

相似文献

1
Nursing documentation of symptoms is associated with higher risk of emergency department visits and hospitalizations in homecare patients.
Nurs Outlook. 2021 May-Jun;69(3):435-446. doi: 10.1016/j.outlook.2020.12.007. Epub 2020 Dec 29.
2
Detecting Language Associated With Home Healthcare Patient's Risk for Hospitalization and Emergency Department Visit.
Nurs Res. 2022;71(4):285-294. doi: 10.1097/NNR.0000000000000586. Epub 2022 Feb 16.
3
Identifying Urinary Tract Infection-Related Information in Home Care Nursing Notes.
J Am Med Dir Assoc. 2021 May;22(5):1015-1021.e2. doi: 10.1016/j.jamda.2020.12.010. Epub 2021 Jan 9.
5
Social Risk Factors are Associated with Risk for Hospitalization in Home Health Care: A Natural Language Processing Study.
J Am Med Dir Assoc. 2023 Dec;24(12):1874-1880.e4. doi: 10.1016/j.jamda.2023.06.031. Epub 2023 Aug 5.
6
Home Healthcare Clinical Notes Predict Patient Hospitalization and Emergency Department Visits.
Nurs Res. 2020 Nov/Dec;69(6):448-454. doi: 10.1097/NNR.0000000000000470.
7
Impact of homecare electronic health record on timeliness of clinical documentation, reimbursement, and patient outcomes.
Appl Clin Inform. 2014 Apr 30;5(2):445-62. doi: 10.4338/ACI-2013-12-RA-0106. eCollection 2014.

引用本文的文献

1
Advancing Global Cancer Symptom Science: Insights and Strategies from the Inaugural Cancer Symptom Science Expert Meeting.
Semin Oncol Nurs. 2025 Aug;41(4):151905. doi: 10.1016/j.soncn.2025.151905. Epub 2025 Aug 5.
3
Exploring Natural Language Processing through an Exemplar Using YouTube.
Int J Environ Res Public Health. 2024 Oct 15;21(10):1357. doi: 10.3390/ijerph21101357.
4
Natural Language Processing Applied to Clinical Documentation in Post-acute Care Settings: A Scoping Review.
J Am Med Dir Assoc. 2024 Jan;25(1):69-83. doi: 10.1016/j.jamda.2023.09.006. Epub 2023 Oct 11.
5
Social Risk Factors are Associated with Risk for Hospitalization in Home Health Care: A Natural Language Processing Study.
J Am Med Dir Assoc. 2023 Dec;24(12):1874-1880.e4. doi: 10.1016/j.jamda.2023.06.031. Epub 2023 Aug 5.
7
Capturing Concerns about Patient Deterioration in Narrative Documentation in Home Healthcare.
AMIA Annu Symp Proc. 2023 Apr 29;2022:552-559. eCollection 2022.
8
Natural Language Processing of Nursing Notes: An Integrative Review.
Comput Inform Nurs. 2023 Jun 1;41(6):377-384. doi: 10.1097/CIN.0000000000000967.

本文引用的文献

1
Identifying Symptom Information in Clinical Notes Using Natural Language Processing.
Nurs Res. 2021;70(3):173-183. doi: 10.1097/NNR.0000000000000488.
2
NimbleMiner: An Open-Source Nursing-Sensitive Natural Language Processing System Based on Word Embedding.
Comput Inform Nurs. 2019 Nov;37(11):583-590. doi: 10.1097/CIN.0000000000000557.
3
Extracting Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data.
Stud Health Technol Inform. 2019 Aug 21;264:1056-1060. doi: 10.3233/SHTI190386.
4
A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data.
Int J Med Inform. 2019 May;125:37-46. doi: 10.1016/j.ijmedinf.2019.02.008. Epub 2019 Feb 20.
5
Precision health: Advancing symptom and self-management science.
Nurs Outlook. 2019 Jul-Aug;67(4):462-475. doi: 10.1016/j.outlook.2019.01.003. Epub 2019 Jan 18.
8
Symptom Burden Among Community-Dwelling Older Adults in the United States.
J Am Geriatr Soc. 2019 Feb;67(2):223-231. doi: 10.1111/jgs.15673. Epub 2018 Dec 12.
10
Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients.
PLoS One. 2018 Jun 7;13(6):e0198687. doi: 10.1371/journal.pone.0198687. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验