Suppr超能文献

联合无监督和有监督学习预测最终的卒中病变。

Combining unsupervised and supervised learning for predicting the final stroke lesion.

机构信息

Center MEMS of University of Minho, Campus of Azurém, Guimarães 4800-058 Portugal; Center Algoritmi, University of Minho, Braga, Portugal.

Center MEMS of University of Minho, Campus of Azurém, Guimarães 4800-058 Portugal; Center Algoritmi, University of Minho, Braga, Portugal.

出版信息

Med Image Anal. 2021 Apr;69:101888. doi: 10.1016/j.media.2020.101888. Epub 2020 Dec 24.

Abstract

Predicting the final ischaemic stroke lesion provides crucial information regarding the volume of salvageable hypoperfused tissue, which helps physicians in the difficult decision-making process of treatment planning and intervention. Treatment selection is influenced by clinical diagnosis, which requires delineating the stroke lesion, as well as characterising cerebral blood flow dynamics using neuroimaging acquisitions. Nonetheless, predicting the final stroke lesion is an intricate task, due to the variability in lesion size, shape, location and the underlying cerebral haemodynamic processes that occur after the ischaemic stroke takes place. Moreover, since elapsed time between stroke and treatment is related to the loss of brain tissue, assessing and predicting the final stroke lesion needs to be performed in a short period of time, which makes the task even more complex. Therefore, there is a need for automatic methods that predict the final stroke lesion and support physicians in the treatment decision process. We propose a fully automatic deep learning method based on unsupervised and supervised learning to predict the final stroke lesion after 90 days. Our aim is to predict the final stroke lesion location and extent, taking into account the underlying cerebral blood flow dynamics that can influence the prediction. To achieve this, we propose a two-branch Restricted Boltzmann Machine, which provides specialized data-driven features from different sets of standard parametric Magnetic Resonance Imaging maps. These data-driven feature maps are then combined with the parametric Magnetic Resonance Imaging maps, and fed to a Convolutional and Recurrent Neural Network architecture. We evaluated our proposal on the publicly available ISLES 2017 testing dataset, reaching a Dice score of 0.38, Hausdorff Distance of 29.21 mm, and Average Symmetric Surface Distance of 5.52 mm.

摘要

预测最终的缺血性中风病灶提供了关于可挽救的低灌注组织体积的关键信息,这有助于医生在治疗计划和干预的艰难决策过程中做出决策。治疗选择受到临床诊断的影响,临床诊断需要划定中风病灶,并使用神经影像学采集来描述脑血流动力学。然而,由于病灶大小、形状、位置的可变性以及缺血性中风发生后潜在的脑血流动力学过程,预测最终的中风病灶是一项复杂的任务。此外,由于中风和治疗之间的时间间隔与脑组织的丧失有关,因此需要在短时间内评估和预测最终的中风病灶,这使得任务更加复杂。因此,需要自动方法来预测最终的中风病灶,并为医生在治疗决策过程中提供支持。我们提出了一种基于无监督和监督学习的全自动深度学习方法,用于预测 90 天后的最终中风病灶。我们的目标是预测最终的中风病灶位置和范围,同时考虑到可能影响预测的潜在脑血流动力学。为了实现这一目标,我们提出了一种双分支受限玻尔兹曼机,该机器从不同的标准参数磁共振成像图谱集中提供专门的数据驱动特征。然后,这些数据驱动的特征图与参数磁共振成像图谱结合,并输入到卷积和递归神经网络架构中。我们在公开的 ISLES 2017 测试数据集上评估了我们的方法,达到了 0.38 的 Dice 分数、29.21mm 的 Hausdorff 距离和 5.52mm 的平均对称面距离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验