Suppr超能文献

基于堆叠稀疏自编码器的缺血性脑卒中病灶分割。

Ischemic stroke lesion segmentation using stacked sparse autoencoder.

机构信息

Department of Electrical and Electronics Engineering, BITS PILANI - K.K Birla Goa Campus, Goa, India.

Department of Electrical and Electronics Engineering, BITS PILANI - K.K Birla Goa Campus, Goa, India.

出版信息

Comput Biol Med. 2018 Aug 1;99:38-52. doi: 10.1016/j.compbiomed.2018.05.027. Epub 2018 Jun 2.

Abstract

Automatic segmentation of ischemic stroke lesion volumes from multi-spectral Magnetic Resonance Imaging (MRI) sequences plays a vital role in quantifying and locating the lesion region. Most existing methods mainly rely on designing hand-crafted features followed by a classifier model for ischemic stroke lesion segmentation. Design of these features requires complex domain knowledge and often lacks the ability to differentiate between the stroke lesions and the normal classes. In this work, we propose an unsupervised featured learning approach based on stacked sparse autoencoder (SSAE) framework for automatically learning the features for accurate segmentation of stroke lesions from brain MR images. A deep architecture is designed using sparse autoencoder (SAE) layers, followed by support vector machine (SVM) classifier for classifying the patches into normal or lesions. We validated our approach on a publicly available Ischemic Stroke Lesion Segmentation (ISLES) 2015 dataset, with a mean precision of 0.968, mean dice coefficient (DC) of 0.943, mean recall of 0.924 and mean accuracy of 0.904. The experimental results show that our proposed approach significantly outperforms the state-of-the-art methods in terms of precision, DC, and recall. Quantitative evaluation was carried out and compared with the existing approaches, which demonstrates that the proposed method is 25.71%, 36.67%, and 16.96% higher in terms of precision, DC and recall values, respectively. The unsupervised features learned via SSAE framework performs better than the hand-crafted features and can be easily trained on large datasets.

摘要

自动分割多光谱磁共振成像 (MRI) 序列中的缺血性脑卒中病灶体积在量化和定位病灶区域方面起着至关重要的作用。大多数现有的方法主要依赖于设计手工制作的特征,然后是分类器模型来进行缺血性脑卒中病灶分割。这些特征的设计需要复杂的领域知识,并且通常缺乏区分脑卒中病灶和正常类别的能力。在这项工作中,我们提出了一种基于堆叠稀疏自编码器 (SSAE) 框架的无监督特征学习方法,用于自动学习从脑 MRI 中准确分割脑卒中病灶的特征。使用稀疏自编码器 (SAE) 层设计了一个深度架构,然后使用支持向量机 (SVM) 分类器将补丁分类为正常或病灶。我们在公开的缺血性脑卒中病灶分割 (ISLES) 2015 数据集上验证了我们的方法,平均精度为 0.968,平均骰子系数 (DC) 为 0.943,平均召回率为 0.924,平均准确率为 0.904。实验结果表明,与现有的方法相比,我们的方法在精度、DC 和召回率方面都有显著的提高。我们进行了定量评估,并与现有的方法进行了比较,结果表明,我们的方法在精度、DC 和召回率方面分别提高了 25.71%、36.67%和 16.96%。通过 SSAE 框架学习的无监督特征比手工制作的特征表现更好,并且可以很容易地在大型数据集上进行训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验