Nowinski Wieslaw L, Walecki Jerzy, Półtorak-Szymczak Gabriela, Sklinda Katarzyna, Mruk Bartosz
John Paul II Center for Virtual Anatomy and Surgical Simulation, University of Cardinal Stefan Wyszynski, Warsaw, Poland.
Department of Radiology and Diagnostic Imaging, Center of Postgraduate Medical Education, Warsaw, Poland.
PeerJ. 2020 Dec 18;8:e10444. doi: 10.7717/peerj.10444. eCollection 2020.
Noncontrast Computed Tomography (NCCT) of the brain has been the first-line diagnosis for emergency evaluation of acute stroke, so a rapid and automated detection, localization, and/or segmentation of ischemic lesions is of great importance. We provide the state-of-the-art review of methods for automated detection, localization, and/or segmentation of ischemic lesions on NCCT in human brain scans along with their comparison, evaluation, and classification. Twenty-two methods are (1) reviewed and evaluated; (2) grouped into image processing and analysis-based methods (11 methods), brain atlas-based methods (two methods), intensity template-based methods (1 method), Stroke Imaging Marker-based methods (two methods), and Artificial Intelligence-based methods (six methods); and (3) properties of these groups of methods are characterized. A new method classification scheme is proposed as a 2 × 2 matrix with local versus global processing and analysis, and density versus spatial sampling. Future studies are necessary to develop more efficient methods directed toward deep learning methods as well as combining the global methods with a high sampling both in space and density for the merged radiologic and neurologic data.
脑部非增强计算机断层扫描(NCCT)一直是急性中风急诊评估的一线诊断方法,因此对缺血性病变进行快速、自动的检测、定位和/或分割至关重要。我们对人脑扫描中NCCT上缺血性病变的自动检测、定位和/或分割方法进行了最新综述,并对其进行了比较、评估和分类。对22种方法进行了如下工作:(1)回顾与评估;(2)分为基于图像处理与分析的方法(11种方法)、基于脑图谱的方法(2种方法)、基于强度模板的方法(1种方法)、基于中风成像标记的方法(2种方法)和基于人工智能的方法(6种方法);(3)对这些方法组的特性进行了描述。提出了一种新的方法分类方案,它是一个2×2矩阵,包括局部与全局处理和分析,以及密度与空间采样。未来的研究有必要开发更有效的方法,这些方法应针对深度学习方法,以及将全局方法与高空间和密度采样相结合,以处理合并的放射学和神经学数据。