Mayer Rulon, Simone Charles B, Turkbey Baris, Choyke Peter
Oncoscore, Garrett Park, MD, USA.
University of Pennsylvania, Philadelphia, PA, USA.
Quant Imaging Med Surg. 2021 Jan;11(1):119-132. doi: 10.21037/qims-20-137a.
Prostate tumor volume correlates with critical components of cancer staging such as Gleason score (GS) grade, predicted disease progression, and metastasis. Therefore, non-invasive tumor volume measurement may elevate clinical management. Radiology assessments of multi-parametric MRI (MP-MRI) commonly visually examine individual images to determine possible tumor presence. This study combines registered MP-MRI into a single image that display normal tissue and possible lesions. This study tests and exploits the vector nature of spatially registered MP-MRI by using supervised target detection algorithms (STDA) and color display and psychovisual analysis (CIELAB) to non-invasively estimate prostate tumor volume.
MRI, including T1, T2, diffusion [apparent diffusion coefficient (ADC)], dynamic contrast enhanced (DCE) images, were resampled, rescaled, translated, and stitched to form spatially registered Multi-parametric cubes. The multi-parametric or multi-spectral signatures (7-component or T1, T2, ADC, etc.) that characterize the prostate tumors were inserted into target detection algorithms with conical decision surfaces (adaptive cosine estimator, ACE). Various detection thresholds were applied to discriminate tumor from normal tissue. In addition, tumor appeared as yellow in color images that were created by assigning red to washout from DCE, green to high B from diffusion, and blue to autonomous diffusion image. The yellow voxels in the three-channel hypercube were visually identified by a reader and recording voxels that exceed a threshold in the b* component of the CIELAB algorithm. The number of reported tumor voxels were converted to volume based on spatial resolution and slice separation. The tumor volume measurements were quantitatively validated by comparing the tumor volume computations to the pathologist's assessment of the histology of sectioned whole mount prostates from 26 consecutive patients with prostate adenocarcinoma who underwent radical prostatectomy. This study analyzed tumors exceeding 1 cc and that also took up contrast material (18 patients).
High correlation coefficients for tumor volume measurements using supervised target detection and color analysis histology from wholemount prostatectomy were computed (R=0.83 and 0.91, respectively). A linear fit for tumor volume measurements using for supervised target detection and color analysis tumor measurements from radical prostatectomy (after correcting for shrinkage from the radical prostatectomy) results in a slope of 1.02 and 3.02, respectively. A polynomial fit for the color analysis to the histology found (R=0.95). Voxels exceeding a threshold in the b* part of the CIELAB algorithm yielded correlation coefficients (0.71, 0.80) offsets (0.01 cc, -0.63 cc) and slopes (1.99, 0.89) against the wholemount prostatectomy and color analysis, respectively.
Supervised target detection and color display and analysis applied to registered MP-MRI non-invasively estimates prostate tumor volumes >1 cc and displaying angiogenesis.
前列腺肿瘤体积与癌症分期的关键组成部分相关,如 Gleason 评分(GS)分级、预测的疾病进展和转移。因此,非侵入性肿瘤体积测量可能会改善临床管理。多参数 MRI(MP-MRI)的放射学评估通常通过目视检查单个图像来确定是否可能存在肿瘤。本研究将配准后的 MP-MRI 合并到一张显示正常组织和可能病变的单一图像中。本研究通过使用监督目标检测算法(STDA)以及颜色显示和心理视觉分析(CIELAB)来测试和利用空间配准的 MP-MRI 的向量特性,以非侵入性地估计前列腺肿瘤体积。
对包括 T1、T2、扩散[表观扩散系数(ADC)]、动态对比增强(DCE)图像在内的 MRI 进行重采样、重新缩放、平移和拼接,以形成空间配准的多参数立方体。将表征前列腺肿瘤的多参数或多光谱特征(7 分量或 T1、T2、ADC 等)插入具有锥形决策面的目标检测算法(自适应余弦估计器,ACE)中。应用各种检测阈值来区分肿瘤与正常组织。此外,在通过将 DCE 的廓清分配为红色、扩散的高 B 值分配为绿色、自主扩散图像分配为蓝色而创建的彩色图像中,肿瘤呈现为黄色。由一名读者目视识别三通道超立方体中的黄色体素,并记录在 CIELAB 算法的 b*分量中超过阈值的体素。根据空间分辨率和切片间距将报告的肿瘤体素数量转换为体积。通过将肿瘤体积计算结果与 26 例接受根治性前列腺切除术的连续前列腺腺癌患者的全层前列腺切片组织学病理学家评估结果进行比较,对肿瘤体积测量进行定量验证。本研究分析了体积超过 1 cc 且摄取造影剂的肿瘤(18 例患者)。
计算得出使用监督目标检测和颜色分析进行肿瘤体积测量与全层前列腺切除术组织学结果之间的高相关系数(分别为 R = 0.83 和 0.91)。使用监督目标检测和颜色分析进行肿瘤体积测量与根治性前列腺切除术肿瘤测量结果(校正根治性前列腺切除术后的收缩)的线性拟合分别得出斜率为 1.02 和 3.02。对颜色分析与组织学进行多项式拟合得出(R = 0.95)。在 CIELAB 算法的 b*部分中超过阈值的体素,与全层前列腺切除术和颜色分析相比,分别得出相关系数(0.71,0.80)、偏移量(0.01 cc,-0.63 cc)和斜率(1.99,0.89)。
应用于配准后的 MP-MRI 的监督目标检测以及颜色显示和分析可非侵入性地估计体积大于 1 cc 且显示血管生成的前列腺肿瘤体积。