Suppr超能文献

使用基于卷积神经网络的心电图检测左心房扩大

Detection of Left Atrial Enlargement Using a Convolutional Neural Network-Enabled Electrocardiogram.

作者信息

Jiang Junrong, Deng Hai, Xue Yumei, Liao Hongtao, Wu Shulin

机构信息

School of Medicine, South China University of Technology, Guangzhou, China.

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

出版信息

Front Cardiovasc Med. 2020 Dec 17;7:609976. doi: 10.3389/fcvm.2020.609976. eCollection 2020.

Abstract

Left atrial enlargement (LAE) can independently predict the development of a variety of cardiovascular diseases. This study sought to develop an artificial intelligence approach for the detection of LAE based on 12-lead electrocardiography (ECG). The study population came from an epidemiological survey of heart disease in Guangzhou. Elderly people (3,391) over 65 years old who had both 10-s 12 lead ECG and echocardiography were enrolled in this study. The left atrial (LA) anteroposterior diameter >40 mm on echocardiography was diagnosed as LAE, and the LA anteroposterior diameter was indexed by body surface area (BSA) to classify LAE into different degrees. A convolutional neural network (CNN) was trained and validated to detect LAE from normal ECGs. The performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score. In this study, gender, obesity, hypertension, and valvular heart disease seemed to be related to left atrial enlargement. The AI-enabled ECG identified LAE with an AUC of 0.949 (95% CI: 0.911-0.987). The sensitivity, specificity, accuracy, precision, and F1 score were 84.0%, 92.0%, 88.0%, 91.3%, and 0.875, respectively. Physicians identified LAE with sensitivity, specificity, accuracy, precision, and F1 scores of 38.0%, 84.0%, 61.0%, 70.4%, and 0.494, respectively. In classifying LAE in different degrees, the AUCs of identifying normal, mild LAE, and moderate-severe LAE ECGs were 0.942 (95% CI: 0.903-0.981), 0.951 (95% CI: 0.917-0.987), and 0.998 (95% CI: 0.996-1.00), respectively. The sensitivity, specificity, accuracy, positive predictive value, and F1 scores of diagnosing mild LAE were 82.0%, 92.0%, 88.7%, 89.1%, and 0.854, while the sensitivity, specificity, accuracy, positive predictive value, and F1 scores of diagnosing moderate-severe LAE were 98.0%, 84.0%, 88.7%, 96.1%, and 0.969, respectively. An AI-enabled ECG acquired during sinus rhythm permits identification of individuals with a high likelihood of LAE. This model requires further refinement and external validation, but it may hold promise for LAE screening.

摘要

左心房扩大(LAE)能够独立预测多种心血管疾病的发生发展。本研究旨在开发一种基于12导联心电图(ECG)检测LAE的人工智能方法。研究人群来自广州的一项心脏病流行病学调查。纳入本研究的是3391名65岁以上同时拥有10秒12导联心电图和超声心动图检查结果的老年人。超声心动图检查显示左心房(LA)前后径>40 mm被诊断为LAE,并根据体表面积(BSA)对LA前后径进行指数化,以将LAE分为不同程度。训练并验证了一个卷积神经网络(CNN),用于从正常心电图中检测LAE。通过计算曲线下面积(AUC)、准确率、灵敏度、特异度和F1分数来评估模型的性能。在本研究中,性别、肥胖、高血压和瓣膜性心脏病似乎与左心房扩大有关。基于人工智能的心电图检测LAE的AUC为0.949(95%CI:0.911 - 0.987)。灵敏度、特异度、准确率、阳性预测值和F1分数分别为84.0%、92.0%、88.0%、91.3%和0.875。医生识别LAE的灵敏度、特异度、准确率、阳性预测值和F1分数分别为38.0%、84.0%、61.0%、70.4%和0.494。在对不同程度的LAE进行分类时,识别正常、轻度LAE和中度 - 重度LAE心电图的AUC分别为0.942(95%CI:0.903 - 0.981)、0.951(95%CI:0.917 - 0.987)和0.998(95%CI:0.996 - 1.00)。诊断轻度LAE的灵敏度、特异度、准确率、阳性预测值和F1分数分别为82.0%、92.0%、88.7%、89.1%和0.854,而诊断中度 - 重度LAE的灵敏度、特异度、准确率、阳性预测值和F1分数分别为98.0%、84.0%、88.7%、96.1%和0.969。窦性心律期间采集的基于人工智能的心电图能够识别LAE可能性较高的个体。该模型需要进一步优化和外部验证,但可能在LAE筛查方面具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5768/7773668/21c7f7fc2148/fcvm-07-609976-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验