The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Commun Biol. 2023 Aug 28;6(1):880. doi: 10.1038/s42003-023-05257-4.
Accurately predicting the brain responses to various stimuli poses a significant challenge in neuroscience. Despite recent breakthroughs in neural encoding using convolutional neural networks (CNNs) in fMRI studies, there remain critical gaps between the computational rules of traditional artificial neurons and real biological neurons. To address this issue, a spiking CNN (SCNN)-based framework is presented in this study to achieve neural encoding in a more biologically plausible manner. The framework utilizes unsupervised SCNN to extract visual features of image stimuli and employs a receptive field-based regression algorithm to predict fMRI responses from the SCNN features. Experimental results on handwritten characters, handwritten digits and natural images demonstrate that the proposed approach can achieve remarkably good encoding performance and can be utilized for "brain reading" tasks such as image reconstruction and identification. This work suggests that SNN can serve as a promising tool for neural encoding.
准确预测大脑对各种刺激的反应是神经科学面临的重大挑战。尽管在 fMRI 研究中使用卷积神经网络 (CNN) 进行神经编码方面取得了最新突破,但传统人工神经元和真实生物神经元的计算规则之间仍存在关键差距。为了解决这个问题,本研究提出了一种基于尖峰 CNN (SCNN) 的框架,以更符合生物学的方式实现神经编码。该框架利用无监督 SCNN 提取图像刺激的视觉特征,并采用基于感受野的回归算法从 SCNN 特征预测 fMRI 反应。手写字符、手写数字和自然图像的实验结果表明,所提出的方法可以实现非常好的编码性能,并可用于“脑阅读”任务,如图像重建和识别。这项工作表明 SNN 可以作为神经编码的一种有前途的工具。