Suppr超能文献

机械、渗透或药物刺激激活 TRPV4 可抗炎,阻断 IL-1β 介导的关节软骨基质破坏。

Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction.

机构信息

Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.

Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.

出版信息

Osteoarthritis Cartilage. 2021 Jan;29(1):89-99. doi: 10.1016/j.joca.2020.08.002.

Abstract

OBJECTIVE

Cartilage health is maintained in response to a range of mechanical stimuli including compressive, shear and tensile strains and associated alterations in osmolality. The osmotic-sensitive ion channel Transient Receptor Potential Vanilloid 4 (TRPV4) is required for mechanotransduction. Mechanical stimuli inhibit interleukin-1β (IL-1β) mediated inflammatory signalling, however the mechanism is unclear. This study aims to clarify the role of TRPV4 in this response.

DESIGN

TRPV4 activity was modulated glycogen synthase kinase (GSK205 antagonist or GSK1016790 A (GSK101) agonist) in articular chondrocytes and cartilage explants in the presence or absence of IL-1β, mechanical (10% cyclic tensile strain (CTS), 0.33 Hz, 24hrs) or osmotic loading (200mOsm, 24hrs). Nitric oxide (NO), prostaglandin E (PGE) and sulphated glycosaminoglycan (sGAG) release and cartilage biomechanics were analysed. Alterations in post-translational tubulin modifications and primary cilia length regulation were examined.

RESULTS

In isolated chondrocytes, mechanical loading inhibited IL-1β mediated NO and PGE release. This response was inhibited by GSK205. Similarly, osmotic loading was anti-inflammatory in cells and explants, this response was abrogated by TRPV4 inhibition. In explants, GSK101 inhibited IL-1β mediated NO release and prevented cartilage degradation and loss of mechanical properties. Upon activation, TRPV4 cilia localisation was increased resulting in histone deacetylase 6 (HDAC6)-dependent modulation of soluble tubulin and altered cilia length regulation.

CONCLUSION

Mechanical, osmotic or pharmaceutical activation of TRPV4 regulates HDAC6-dependent modulation of ciliary tubulin and is anti-inflammatory. This study reveals for the first time, the potential of TRPV4 manipulation as a novel therapeutic mechanism to supress pro-inflammatory signalling and cartilage degradation.

摘要

目的

软骨健康受到多种机械刺激的维持,包括压缩、剪切和拉伸应变以及渗透压的相应变化。渗透压敏感型离子通道瞬时受体电位香草酸 4(TRPV4)是机械转导所必需的。机械刺激抑制白细胞介素-1β(IL-1β)介导的炎症信号,但机制尚不清楚。本研究旨在阐明 TRPV4 在这一反应中的作用。

设计

在存在或不存在白细胞介素-1β、机械(10%循环拉伸应变(CTS),0.33Hz,24 小时)或渗透压加载(200mOsm,24 小时)的情况下,调节关节软骨细胞和软骨外植体中糖原合酶激酶(GSK205 拮抗剂或 GSK1016790A(GSK101)激动剂)的 TRPV4 活性。分析一氧化氮(NO)、前列腺素 E(PGE)和硫酸化糖胺聚糖(sGAG)的释放以及软骨生物力学。检测翻译后微管修饰和初级纤毛长度调节的变化。

结果

在分离的软骨细胞中,机械加载抑制了白细胞介素-1β介导的 NO 和 PGE 释放。这种反应被 GSK205 抑制。类似地,渗透压加载在细胞和外植体中具有抗炎作用,这种反应被 TRPV4 抑制所阻断。在外植体中,GSK101 抑制白细胞介素-1β介导的 NO 释放,并防止软骨降解和机械性能丧失。TRPV4 激活后,纤毛定位增加,导致组蛋白去乙酰化酶 6(HDAC6)依赖性调节可溶性微管和改变纤毛长度调节。

结论

TRPV4 的机械、渗透或药物激活调节 HDAC6 依赖性调节纤毛微管,并具有抗炎作用。本研究首次揭示了 TRPV4 操作作为抑制促炎信号和软骨降解的新治疗机制的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe3d/7799379/3adfd774a3a2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验