Suppr超能文献

RNAi 的脱靶效应与双链 RNA 与非靶 mRNA 之间的错配率相关。

Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA.

机构信息

The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Institute of Entomology, Jiangxi Agricultural University, Nanchang, China.

出版信息

RNA Biol. 2021 Nov;18(11):1747-1759. doi: 10.1080/15476286.2020.1868680. Epub 2021 Jan 4.

Abstract

RNAi is a potent technique for the knockdown of target genes. However, its potential off-target effects limit the widespread applications in both reverse genetic analysis and genetic manipulation. Previous efforts have uncovered rules underlying specificity of siRNA-based silencing, which has broad applications in humans, but the basis for specificity of dsRNAs, which are better suited for use as insecticides, is poorly understood. Here, we investigated the rules governing dsRNA specificity. Mutational analyses showed that dsRNAs with >80% sequence identity with target genes triggered RNAi efficiently. dsRNAs with ≥16 bp segments of perfectly matched sequence or >26 bp segments of almost perfectly matched sequence with one or two mismatches scarcely distributed (single mismatches inserted between ≥5 bp matching segments or mismatched couplets inserted between ≥8 bp matching segments) also able to trigger RNAi. Using these parameters to predict off-target risk, dsRNAs can be designed to optimize specificity and efficiency, paving the way to the widespread, rational application of RNAi in pest control.

摘要

RNAi 是一种有效的靶基因敲低技术。然而,其潜在的脱靶效应限制了其在反向遗传学分析和遗传操作中的广泛应用。以前的研究已经揭示了基于 siRNA 的沉默特异性的规则,这些规则在人类中具有广泛的应用,但 dsRNA 的特异性基础,dsRNA 更适合用作杀虫剂,却知之甚少。在这里,我们研究了 dsRNA 特异性的规则。突变分析表明,与靶基因具有 >80%序列同一性的 dsRNA 能够有效地触发 RNAi。具有 16 个以上 bp 完全匹配序列或 26 个以上 bp 几乎完全匹配序列的 dsRNA (一个或两个错配很少分布(错配插入在 ≥5 bp 匹配序列之间或错配对插入在 ≥8 bp 匹配序列之间))也能够触发 RNAi。使用这些参数来预测脱靶风险,可以设计 dsRNA 以优化特异性和效率,为 RNAi 在害虫防治中的广泛、合理应用铺平道路。

相似文献

1
Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA.
RNA Biol. 2021 Nov;18(11):1747-1759. doi: 10.1080/15476286.2020.1868680. Epub 2021 Jan 4.
2
A computational study of off-target effects of RNA interference.
Nucleic Acids Res. 2005 Mar 30;33(6):1834-47. doi: 10.1093/nar/gki324. Print 2005.
3
Transcript Level and Sequence Matching Are Key Determinants of Off-Target Effects in RNAi.
J Agric Food Chem. 2024 Jan 10;72(1):577-589. doi: 10.1021/acs.jafc.3c07434. Epub 2023 Dec 22.
5
Novel insights into RNAi off-target effects using C. elegans paralogs.
BMC Genomics. 2007 Apr 19;8:106. doi: 10.1186/1471-2164-8-106.
6
Positional effects of double-stranded RNAs targeting β-Actin gene affect RNA interference efficiency in Colorado potato beetle.
Pestic Biochem Physiol. 2022 Jun;184:105121. doi: 10.1016/j.pestbp.2022.105121. Epub 2022 May 14.
7
Screening target specificity of siRNAs by rapid amplification of cDNA ends (RACE) for non-sequenced species.
J Mol Neurosci. 2011 May;44(1):68-75. doi: 10.1007/s12031-011-9514-6. Epub 2011 Mar 25.
8
Comparison of the RNA interference effects triggered by dsRNA and siRNA in Tribolium castaneum.
Pest Manag Sci. 2013 Jul;69(7):781-6. doi: 10.1002/ps.3432. Epub 2013 Mar 22.
9
Enhancing RNAi by using concatemerized double-stranded RNA.
Pest Manag Sci. 2019 Feb;75(2):506-514. doi: 10.1002/ps.5149. Epub 2018 Sep 24.
10
Scavenger receptor mediates systemic RNA interference in ticks.
PLoS One. 2011;6(12):e28407. doi: 10.1371/journal.pone.0028407. Epub 2011 Dec 1.

引用本文的文献

2
RNAi in Pest Control: Critical Factors Affecting dsRNA Efficacy.
Insects. 2025 Jul 18;16(7):737. doi: 10.3390/insects16070737.
3
Toxicological and Functional Assessment of Minicell-Encapsulated dsRNA on Biocontrol Agents in Agriculture.
ACS Environ Au. 2025 Jun 17;5(4):427-441. doi: 10.1021/acsenvironau.5c00067. eCollection 2025 Jul 16.
4
Optimizing dsRNA sequences for RNAi in pest control and research with the dsRIP web platform.
BMC Biol. 2025 Apr 28;23(1):114. doi: 10.1186/s12915-025-02219-6.
6
Targeted Control of Gene Expression Using CRISPR-Associated Endoribonucleases.
Cells. 2025 Apr 3;14(7):543. doi: 10.3390/cells14070543.
7
Heat shock transcription factor-mediated thermal tolerance and cell size plasticity in marine diatoms.
Nat Commun. 2025 Apr 10;16(1):3404. doi: 10.1038/s41467-025-58547-2.
9
Spray-induced gene silencing for crop protection: recent advances and emerging trends.
Front Plant Sci. 2025 Feb 20;16:1527944. doi: 10.3389/fpls.2025.1527944. eCollection 2025.

本文引用的文献

1
Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula.
Arch Insect Biochem Physiol. 2020 Aug;104(4):e21692. doi: 10.1002/arch.21692. Epub 2020 May 22.
2
Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges.
Front Plant Sci. 2020 Apr 21;11:451. doi: 10.3389/fpls.2020.00451. eCollection 2020.
3
Risk Assessment Considerations for Genetically Modified RNAi Plants: EFSA's Activities and Perspective.
Front Plant Sci. 2020 Apr 21;11:445. doi: 10.3389/fpls.2020.00445. eCollection 2020.
4
Editorial focus: understanding off-target effects as the key to successful RNAi therapy.
Cell Mol Biol Lett. 2019 Dec 9;24:69. doi: 10.1186/s11658-019-0196-3. eCollection 2019.
6
Mechanisms, Applications, and Challenges of Insect RNA Interference.
Annu Rev Entomol. 2020 Jan 7;65:293-311. doi: 10.1146/annurev-ento-011019-025224. Epub 2019 Oct 14.
7
siRNA-Finder (si-Fi) Software for RNAi-Target Design and Off-Target Prediction.
Front Plant Sci. 2019 Aug 15;10:1023. doi: 10.3389/fpls.2019.01023. eCollection 2019.
9
The molecular mechanism of dsRNA processing by a bacterial Dicer.
Nucleic Acids Res. 2019 May 21;47(9):4707-4720. doi: 10.1093/nar/gkz208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验