Suppr超能文献

一种应用于高维、小样本量神经生理数据集回归的降维技术。

A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets.

机构信息

Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.

Univ. Grenoble Alpes, CNRS, LPNC UMR 5105, 38000, Grenoble, France.

出版信息

BMC Neurosci. 2021 Jan 4;22(1):1. doi: 10.1186/s12868-020-00605-0.

Abstract

BACKGROUND

A common problem in neurophysiological signal processing is the extraction of meaningful information from high dimension, low sample size data (HDLSS). We present RoLDSIS (regression on low-dimension spanned input space), a regression technique based on dimensionality reduction that constrains the solution to the subspace spanned by the available observations. This avoids regularization parameters in the regression procedure, as needed in shrinkage regression methods.

RESULTS

We applied RoLDSIS to the EEG data collected in a phonemic identification experiment. In the experiment, morphed syllables in the continuum /da/-/ta/ were presented as acoustic stimuli to the participants and the event-related potentials (ERP) were recorded and then represented as a set of features in the time-frequency domain via the discrete wavelet transform. Each set of stimuli was chosen from a preliminary identification task executed by the participant. Physical and psychophysical attributes were associated to each stimulus. RoLDSIS was then used to infer the neurophysiological axes, in the feature space, associated with each attribute. We show that these axes can be reliably estimated and that their separation is correlated with the individual strength of phonemic categorization. The results provided by RoLDSIS are interpretable in the time-frequency domain and may be used to infer the neurophysiological correlates of phonemic categorization. A comparison with commonly used regularized regression techniques was carried out by cross-validation.

CONCLUSION

The prediction errors obtained by RoLDSIS are comparable to those obtained with Ridge Regression and smaller than those obtained with LASSO and SPLS. However, RoLDSIS achieves this without the need for cross-validation, a procedure that requires the extraction of a large amount of observations from the data and, consequently, a decreased signal-to-noise ratio when averaging trials. We show that, even though RoLDSIS is a simple technique, it is suitable for the processing and interpretation of neurophysiological signals.

摘要

背景

神经生理信号处理中的一个常见问题是从高维、小样本量数据(HDLSS)中提取有意义的信息。我们提出了 RoLDSIS(基于降维的回归,回归到低维可扩展输入空间),这是一种基于降维的回归技术,该技术限制了可观测数据子空间内的解决方案。这避免了回归过程中的正则化参数,而收缩回归方法则需要这些参数。

结果

我们将 RoLDSIS 应用于在语音识别实验中收集的 EEG 数据。在实验中,连续体 /da/-/ta/中的变形音节作为声学刺激呈现给参与者,记录事件相关电位(ERP),然后通过离散小波变换在时频域中表示为一组特征。每组刺激都是由参与者执行的初步识别任务选择的。物理和心理物理属性与每个刺激相关联。然后,RoLDSIS 用于推断与每个属性相关的特征空间中的神经生理轴。我们表明,这些轴可以可靠地估计,并且它们的分离与语音分类的个体强度相关。RoLDSIS 提供的结果在时频域中是可解释的,可用于推断语音分类的神经生理相关性。通过交叉验证与常用的正则化回归技术进行了比较。

结论

RoLDSIS 获得的预测误差与 Ridge Regression 获得的预测误差相当,且小于 LASSO 和 SPLS 获得的预测误差。然而,RoLDSIS 无需交叉验证即可实现这一点,该过程需要从数据中提取大量观测值,从而在平均试验时降低信噪比。我们表明,即使 RoLDSIS 是一种简单的技术,它也适用于神经生理信号的处理和解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2816/7780417/baac2fcc9cfd/12868_2020_605_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验