Suppr超能文献

从野生鹿和野猪扁桃体中分离出的 spp.:基因组特征。

spp. Isolated from Tonsils of Wild Deer and Boars: Genomic Characterization.

机构信息

Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.

Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.

出版信息

Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02651-20.

Abstract

is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole-genome sequencing to characterize species isolates recovered over 1 year from wild animals in their natural habitats in Spain. Three different spp. ( [ = 19], subsp. [ = 4], and [ = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding troughs. No species was detected in feces. was detected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wild boars. isolates belonged to 3 different core genome multilocus sequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonal complex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb; CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 year apart, revealing their long-term occurrence within the animal population and/or environmental reservoir. The presence of identical strains in deer and wild boars suggests contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the isolates, respectively, and all lineage II isolates ( = 3) carried SSI-1 stress islands. This study highlights the need for monitoring environmental contamination and the importance of tonsils as a possible intrahost reservoir. is a foodborne bacterial pathogen responsible for listeriosis. Whole-genome sequencing has been extensively used in public health and food industries to characterize circulating isolates, but genomic data on isolates occurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic and that the same genotypes can be found at different time points in different host species. This work highlights the need of species monitoring of environmental contamination and the importance of tonsils as a possible intrahost reservoir.

摘要

是一种主要的人兽共患食源性病原体。然而,关于环境宿主的数据仍然很少。在这里,我们使用全基因组测序技术,对西班牙自然栖息地的野生动物在 1 年期间采集的 物种分离株进行了特征描述。在 23 个动物扁桃体(9 只鹿,14 只野猪)和 2 个饲料槽中检测到了 3 种不同的 spp.([ = 19], 亚种 [ = 4]和 [ = 3])。粪便中未检测到 物种。在 44.4%(18 只中的 8 只)的鹿和 40.7%(27 只中的 11 只)的野猪的扁桃体中检测到了 。属于 3 个不同核心基因组多位点序列分型(cgMLST)类型(CT)的 3 种不同亚系(SL1、SL387 和 SL155)的 分离株来自 I 和 II 谱系。虽然 cgMLST 型 L1-SL1-ST1-CT5279(IVb;克隆复合体 1 [CC1])仅在一种动物中发生,但 L1-SL387-ST388-CT5239(IVb;CC388)和 L2-SL155-ST155-CT1170(IIa;CC155)型则存在于多种动物中。此外,L1-SL387-ST388-CT5239(IVb;CC388)分离株相隔 1 年采集,表明其在动物种群和/或环境宿主中存在长期存在。鹿和野猪中存在相同的 菌株表明其可能来自于共同的食物或环境源的污染,尽管不能排除宿主间传播的可能性。在 100%、5%和 79%的 分离株中分别存在 LIPI-1、LIPI-3 和 LIPI-4 致病岛,所有 II 谱系的 分离株( = 3)均携带 SSI-1 应激岛。本研究强调了监测 环境污染的必要性,以及扁桃体作为可能的 宿主内储库的重要性。是一种食源性病原体,可引起李斯特菌病。全基因组测序已广泛应用于公共卫生和食品工业,用于对循环 分离株进行特征描述,但关于自然环境和野生动物中分离株的基因组数据仍然很少。在这里,我们表明野生动物携带致病性 ,并且在不同宿主物种的不同时间点可以发现相同的基因型。这项工作强调了监测 环境污染的必要性,以及扁桃体作为可能的 宿主内储库的重要性。

相似文献

1
spp. Isolated from Tonsils of Wild Deer and Boars: Genomic Characterization.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02651-20.
2
Listeria monocytogenes in Different Specimens from Healthy Red Deer and Wild Boars.
Foodborne Pathog Dis. 2016 Jul;13(7):391-7. doi: 10.1089/fpd.2015.2061. Epub 2016 May 9.
3
Characteristics of Clinical Isolates of in Sichuan, China, in 2022 Based on Whole Genome Sequencing Analysis.
Foodborne Pathog Dis. 2024 Jul;21(7):424-430. doi: 10.1089/fpd.2023.0173. Epub 2024 Apr 10.
4
Atypical Hemolytic Isolates Are Virulent, albeit Less than .
Infect Immun. 2019 Mar 25;87(4). doi: 10.1128/IAI.00758-18. Print 2019 Apr.
5
Genomic characterization of Listeria spp. isolated from tonsils, udder and feces of domestic dairy ruminants in Spain.
Microbes Infect. 2023 May;25(4):105079. doi: 10.1016/j.micinf.2022.105079. Epub 2022 Dec 2.
6
Molecular Characteristics and Virulence Profile of Clinical Isolates in Northern Taiwan, 2009-2019.
Foodborne Pathog Dis. 2024 Jun;21(6):386-394. doi: 10.1089/fpd.2023.0136. Epub 2024 Feb 12.
7
Contrasting Genetic Diversity of Pathogenicity Islands 3 and 4 Harbored by Nonpathogenic spp.
Appl Environ Microbiol. 2023 Feb 28;89(2):e0209722. doi: 10.1128/aem.02097-22. Epub 2023 Feb 2.
8
Whole-genome sequencing reveals Listeria monocytogenes diversity and allows identification of long-term persistent strains in Brazil.
Environ Microbiol. 2019 Dec;21(12):4478-4487. doi: 10.1111/1462-2920.14726. Epub 2019 Jul 15.

引用本文的文献

2
Whole-genome sequencing and metagenomics reveal diversity and prevalence of spp. from soil in the Nantahala National Forest.
Microbiol Spectr. 2025 Jan 7;13(1):e0171224. doi: 10.1128/spectrum.01712-24. Epub 2024 Dec 9.
3
Detection and Characterization of Zoonotic Pathogens in Game Meat Hunted in Northwestern Italy.
Animals (Basel). 2024 Feb 7;14(4):562. doi: 10.3390/ani14040562.
4
Tetracycline resistance in and from wild black bears () in the United States is mediated by novel transposable elements.
Appl Environ Microbiol. 2023 Nov 29;89(11):e0120523. doi: 10.1128/aem.01205-23. Epub 2023 Oct 27.
5
Genomic and pathogenicity islands of -overview of selected aspects.
Front Mol Biosci. 2023 Jun 14;10:1161486. doi: 10.3389/fmolb.2023.1161486. eCollection 2023.
7
In Vitro and In Vivo Virulence Study of Isolated from the Andalusian Outbreak in 2019.
Trop Med Infect Dis. 2023 Jan 12;8(1):58. doi: 10.3390/tropicalmed8010058.
8
Characterisation of Isolates from Hunted Game and Game Meat from Finland.
Foods. 2022 Nov 17;11(22):3679. doi: 10.3390/foods11223679.

本文引用的文献

1
sp. nov., isolated from a water trough and the faeces of healthy sheep.
Int J Syst Evol Microbiol. 2020 Nov;70(11):5868-5879. doi: 10.1099/ijsem.0.004494.
2
The European Union One Health 2018 Zoonoses Report.
EFSA J. 2019 Dec 11;17(12):e05926. doi: 10.2903/j.efsa.2019.5926. eCollection 2019 Dec.
4
Isolate-Based Surveillance of by Whole Genome Sequencing in Austria.
Front Microbiol. 2019 Oct 1;10:2282. doi: 10.3389/fmicb.2019.02282. eCollection 2019.
5
Carriage and potential long distance transmission of by migratory black-headed gulls in Dianchi Lake, Kunming.
Emerg Microbes Infect. 2019;8(1):1195-1204. doi: 10.1080/22221751.2019.1647764.
7
Listeriosis in fattening pigs caused by poor quality silage - a case report.
BMC Vet Res. 2018 Nov 21;14(1):362. doi: 10.1186/s12917-018-1687-6.
8
Retrospective validation of whole genome sequencing-enhanced surveillance of listeriosis in Europe, 2010 to 2015.
Euro Surveill. 2018 Aug;23(33). doi: 10.2807/1560-7917.ES.2018.23.33.1700798.
9
Microbiological Evaluation of Carcasses of Wild Boar Hunted in a Hill Area of Northern Italy.
J Food Prot. 2018 Sep;81(9):1519-1525. doi: 10.4315/0362-028X.JFP-18-077.
10
MALDI-TOF mass spectrometry-based identification of Listeria species in surveillance: A prospective study.
J Microbiol Methods. 2018 Jan;144:29-32. doi: 10.1016/j.mimet.2017.10.009. Epub 2017 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验