Deore Bhavana, Sampson Kathleen L, Lacelle Thomas, Kredentser Nathan, Lefebvre Jacques, Young Luke Steven, Hyland Joseph, Amaya Rony E, Tanha Jamshid, Malenfant Patrick R L, de Haan Hendrick W, Paquet Chantal
Security and Disruptive Technologies, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
Department of Electronics, Carleton University, 1125 Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
Nat Commun. 2021 Jan 4;12(1):55. doi: 10.1038/s41467-020-20256-3.
3D printing has enabled materials, geometries and functional properties to be combined in unique ways otherwise unattainable via traditional manufacturing techniques, yet its adoption as a mainstream manufacturing platform for functional objects is hindered by the physical challenges in printing multiple materials. Vat polymerization offers a polymer chemistry-based approach to generating smart objects, in which phase separation is used to control the spatial positioning of materials and thus at once, achieve desirable morphological and functional properties of final 3D printed objects. This study demonstrates how the spatial distribution of different material phases can be modulated by controlling the kinetics of gelation, cross-linking density and material diffusivity through the judicious selection of photoresin components. A continuum of morphologies, ranging from functional coatings, gradients and composites are generated, enabling the fabrication of 3D piezoresistive sensors, 5G antennas and antimicrobial objects and thus illustrating a promising way forward in the integration of dissimilar materials in 3D printing of smart or functional parts.
3D打印能够以独特的方式将材料、几何形状和功能特性结合起来,而这是传统制造技术无法实现的。然而,由于在打印多种材料时面临物理挑战,3D打印作为功能性物体的主流制造平台的应用受到了阻碍。光固化聚合提供了一种基于聚合物化学的方法来生成智能物体,其中相分离用于控制材料的空间定位,从而同时实现最终3D打印物体所需的形态和功能特性。本研究展示了如何通过明智地选择光致抗蚀剂成分,控制凝胶化动力学、交联密度和材料扩散率,来调节不同材料相的空间分布。生成了一系列形态,从功能涂层、梯度材料到复合材料,能够制造3D压阻式传感器、5G天线和抗菌物体,从而说明了在智能或功能部件的3D打印中整合不同材料的一条有前景的前进道路。