Suppr超能文献

深度睡眠卷积神经网络能够准确快速地检测睡眠觉醒。

DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal.

作者信息

Li Hongyang, Guan Yuanfang

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA.

出版信息

Commun Biol. 2021 Jan 4;4(1):18. doi: 10.1038/s42003-020-01542-8.

Abstract

Sleep arousals are transient periods of wakefulness punctuated into sleep. Excessive sleep arousals are associated with symptoms such as sympathetic activation, non-restorative sleep, and daytime sleepiness. Currently, sleep arousals are mainly annotated by human experts through looking at 30-second epochs (recorded pages) manually, which requires considerable time and effort. Here we present a deep learning approach for automatically segmenting sleep arousal regions based on polysomnographic recordings. Leveraging a specific architecture that 'translates' input polysomnographic signals to sleep arousal labels, this algorithm ranked first in the "You Snooze, You Win" PhysioNet Challenge. We created an augmentation strategy by randomly swapping similar physiological channels, which notably improved the prediction accuracy. Our algorithm enables fast and accurate delineation of sleep arousal events at the speed of 10 seconds per sleep recording. This computational tool would greatly empower the scoring process in clinical settings and accelerate studies on the impact of arousals.

摘要

睡眠微觉醒是穿插于睡眠中的短暂觉醒期。过多的睡眠微觉醒与诸如交感神经激活、非恢复性睡眠和日间嗜睡等症状相关。目前,睡眠微觉醒主要由人类专家通过手动查看30秒的时段(记录页面)来标注,这需要大量的时间和精力。在此,我们提出一种基于多导睡眠图记录自动分割睡眠微觉醒区域的深度学习方法。利用一种将输入的多导睡眠图信号“转换”为睡眠微觉醒标签的特定架构,该算法在“你打盹,你就赢”生理信号挑战赛中排名第一。我们通过随机交换相似的生理通道创建了一种增强策略,显著提高了预测准确率。我们的算法能够以每个睡眠记录10秒的速度快速准确地描绘睡眠微觉醒事件。这种计算工具将极大地助力临床环境中的评分过程,并加速关于微觉醒影响的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ad/7782826/42768b1f5ac2/42003_2020_1542_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验