Suppr超能文献

类风湿关节炎关节损伤的多水平模型

Multilevel Modeling of Joint Damage in Rheumatoid Arthritis.

作者信息

Li Hongyang, Guan Yuanfang

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.

出版信息

Adv Intell Syst. 2022 Nov;4(11). doi: 10.1002/aisy.202200184. Epub 2022 Oct 13.

Abstract

While most deep learning approaches are developed for single images, in real world applications, images are often obtained as a series to inform decision making. Due to hardware (memory) and software (algorithm) limitations, few methods have been developed to integrate multiple images so far. In this study, we present an approach that seamlessly integrates deep learning and traditional machine learning models, to study multiple images and score joint damages in rheumatoid arthritis. This method allows the quantification of joining space narrowing to approach the clinical upper limit. Beyond predictive performance, we integrate the multilevel interconnections across joints and damage types into the machine learning model and reveal the cross-regulation map of joint damages in rheumatoid arthritis.

摘要

虽然大多数深度学习方法是针对单张图像开发的,但在实际应用中,图像通常是作为一个系列获取的,以辅助决策。由于硬件(内存)和软件(算法)的限制,到目前为止,很少有方法被开发用于整合多幅图像。在本研究中,我们提出了一种方法,该方法无缝集成了深度学习和传统机器学习模型,用于研究多幅图像并对类风湿性关节炎中的关节联合损伤进行评分。这种方法能够对关节间隙狭窄进行量化,以接近临床上限。除了预测性能外,我们还将跨关节和损伤类型的多级互连整合到机器学习模型中,并揭示类风湿性关节炎中关节损伤的交叉调节图谱。

相似文献

1
Multilevel Modeling of Joint Damage in Rheumatoid Arthritis.类风湿关节炎关节损伤的多水平模型
Adv Intell Syst. 2022 Nov;4(11). doi: 10.1002/aisy.202200184. Epub 2022 Oct 13.

本文引用的文献

1
Multiview confocal super-resolution microscopy.多视场共聚焦超分辨显微镜。
Nature. 2021 Dec;600(7888):279-284. doi: 10.1038/s41586-021-04110-0. Epub 2021 Nov 26.
3
A survival model generalized to regression learning algorithms.一种推广到回归学习算法的生存模型。
Nat Comput Sci. 2021 Jun;1(6):433-440. doi: 10.1038/s43588-021-00083-2. Epub 2021 Jun 21.
7
Detecting Asymmetric Patterns and Localizing Cancers on Mammograms.在乳房X光片上检测不对称模式并定位癌症。
Patterns (N Y). 2020 Oct 9;1(7). doi: 10.1016/j.patter.2020.100106. Epub 2020 Sep 21.
9
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.NuSeT:一种可靠分离和分析拥挤细胞的深度学习工具。
PLoS Comput Biol. 2020 Sep 14;16(9):e1008193. doi: 10.1371/journal.pcbi.1008193. eCollection 2020 Sep.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验