Li Hongyang, Guan Yuanfang
Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
Adv Intell Syst. 2022 Nov;4(11). doi: 10.1002/aisy.202200184. Epub 2022 Oct 13.
While most deep learning approaches are developed for single images, in real world applications, images are often obtained as a series to inform decision making. Due to hardware (memory) and software (algorithm) limitations, few methods have been developed to integrate multiple images so far. In this study, we present an approach that seamlessly integrates deep learning and traditional machine learning models, to study multiple images and score joint damages in rheumatoid arthritis. This method allows the quantification of joining space narrowing to approach the clinical upper limit. Beyond predictive performance, we integrate the multilevel interconnections across joints and damage types into the machine learning model and reveal the cross-regulation map of joint damages in rheumatoid arthritis.
虽然大多数深度学习方法是针对单张图像开发的,但在实际应用中,图像通常是作为一个系列获取的,以辅助决策。由于硬件(内存)和软件(算法)的限制,到目前为止,很少有方法被开发用于整合多幅图像。在本研究中,我们提出了一种方法,该方法无缝集成了深度学习和传统机器学习模型,用于研究多幅图像并对类风湿性关节炎中的关节联合损伤进行评分。这种方法能够对关节间隙狭窄进行量化,以接近临床上限。除了预测性能外,我们还将跨关节和损伤类型的多级互连整合到机器学习模型中,并揭示类风湿性关节炎中关节损伤的交叉调节图谱。