Suppr超能文献

意大利新冠肺炎疫情早期的短期预测。加权和累积日均增长率在指数衰减模型中的应用。

Short-term forecast in the early stage of the COVID-19 outbreak in Italy. Application of a weighted and cumulative average daily growth rate to an exponential decay model.

作者信息

Bartolomeo Nicola, Trerotoli Paolo, Serio Gabriella

机构信息

Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.

出版信息

Infect Dis Model. 2021;6:212-221. doi: 10.1016/j.idm.2020.12.007. Epub 2020 Dec 30.

Abstract

To estimate the size of the novel coronavirus (COVID-19) outbreak in the early stage in Italy, this paper introduces the cumulated and weighted average daily growth rate (WR) to evaluate an epidemic curve. On the basis of an exponential decay model (EDM), we provide estimations of the WR in four-time intervals from February 27 to April 07, 2020. By calibrating the parameters of the EDM to the reported data in Hubei Province of China, we also attempt to forecast the evolution of the outbreak. We compare the EDM applied to WR and the Gompertz model, which is based on exponential decay and is often used to estimate cumulative events. Specifically, we assess the performance of each model to short-term forecast of the epidemic, and to predict the final epidemic size. Based on the official counts for confirmed cases, the model applied to data from February 27 until the 17th of March estimate that the cumulative number of infected in Italy could reach 131,280 (with a credibility interval 71,415-263,501) by April 25 (credibility interval April 12 to May 3). With the data available until the 24st of March the peak date should be reached on May 3 (April 23 to May 23) with 197,179 cumulative infections expected (130,033-315,269); with data available until the 31st of March the peak should be reached on May 4 (April 25 to May 18) with 202,210 cumulative infections expected (155.235-270,737); with data available until the 07st of April the peak should be reached on May 3 (April 26 to May 11) with 191,586 (160,861-232,023) cumulative infections expected. Based on the average mean absolute percentage error (MAPE), cumulated infections forecasts provided by the EDM applied to WR performed better across all scenarios than the Gompertz model. An exponential decay model applied to the cumulated and weighted average daily growth rate appears to be useful in estimating the number of cases and peak of the COVID-19 outbreak in Italy and the model was more reliable in the exponential growth phase.

摘要

为估算意大利新型冠状病毒(COVID-19)疫情早期的规模,本文引入累积加权平均日增长率(WR)来评估疫情曲线。基于指数衰减模型(EDM),我们对2020年2月27日至4月7日这四个时间段的WR进行了估算。通过将EDM的参数校准为中国湖北省报告的数据,我们还尝试预测疫情的演变。我们比较了应用于WR的EDM和基于指数衰减且常用于估算累积事件的Gompertz模型。具体而言,我们评估了每个模型对疫情短期预测以及预测最终疫情规模的性能。根据官方确诊病例数,应用于2月27日至3月17日数据的模型估计,到4月25日(可信区间为4月12日至5月3日),意大利累计感染人数可能达到131,280人(可信区间为71,415 - 263,501)。根据截至3月24日的数据,峰值日期应在5月3日(4月23日至5月23日)达到,预计累计感染197,179人(130,033 - 315,269);根据截至3月31日的数据,峰值应在5月4日(4月25日至5月18日)达到,预计累计感染202,210人(155,235 - 270,737);根据截至4月7日的数据,峰值应在5月3日(4月26日至5月11日)达到,预计累计感染191,586人(160,861 - 232,023)。基于平均绝对百分比误差(MAPE),应用于WR的EDM提供的累计感染预测在所有情况下均比Gompertz模型表现更好。应用于累积加权平均日增长率的指数衰减模型似乎有助于估算意大利COVID-19疫情的病例数和峰值,且该模型在指数增长阶段更为可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5741/7809402/93b30010c4c8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验