Suppr超能文献

利用检测阳性率和报告病例率估算美国各州层面的新冠病毒病患病率和血清阳性率

Using Test Positivity and Reported Case Rates to Estimate State-Level COVID-19 Prevalence and Seroprevalence in the United States.

作者信息

Chiu Weihsueh A, Ndeffo-Mbah Martial L

出版信息

medRxiv. 2020 Dec 26:2020.10.07.20208504. doi: 10.1101/2020.10.07.20208504.

Abstract

UNLABELLED

Accurate estimates of infection prevalence and seroprevalence are essential for evaluating and informing public health responses needed to address the ongoing spread of COVID-19 in the United States. A data-driven Bayesian single parameter semi-empirical model was developed and used to evaluate state-level prevalence and seroprevalence of COVID-19 using daily reported cases and test positivity ratios. COVID-19 prevalence is well-approximated by the of the positivity rate and the reported case rate. As of December 8, 2020, we estimate nation-wide a prevalence of 1.4% [Credible Interval (CrI): 0.8%-1.9%] and a seroprevalence of 11.1% [CrI: 10.1%-12.2%], with state-level prevalence ranging from 0.3% [CrI: 0.2%-0.4%] in Maine to 3.0% [CrI: 1.1%-5.7%] in Pennsylvania, and seroprevalence from 1.4% [CrI: 1.0%-2.0%] in Maine to 22% [CrI: 18%-27%] in New York. The use of this simple and easy-to-communicate model will improve the ability to make public health decisions that effectively respond to the ongoing pandemic.

BIOGRAPHICAL SKETCH OF AUTHORS

Dr. Weihsueh A. Chiu, is a professor of environmental health sciences at Texas A&M University. He is an expert in data-driven Bayesian modeling of public health related dynamical systems. Dr. Martial L. Ndeffo-Mbah, is an Assistant Professor of Epidemiology at Texas A&M University. He is an expert in mathematical and computational modeling of infectious diseases.

SUMMARY LINE

Relying on reported cases and test positivity rates individually can result in incorrect inferences as to the spread of COVID-19, and public health decision-making can be improved by instead using their geometric mean as a measure of COVID-19 prevalence and transmission.

摘要

未标注

准确估计感染率和血清阳性率对于评估和指导应对美国新冠病毒持续传播所需的公共卫生应对措施至关重要。开发了一种数据驱动的贝叶斯单参数半经验模型,并使用每日报告病例和检测阳性率来评估新冠病毒的州级感染率和血清阳性率。新冠病毒感染率可以通过阳性率和报告病例率的几何平均数很好地近似。截至2020年12月8日,我们估计全国感染率为1.4%[可信区间(CrI):0.8%-1.9%],血清阳性率为11.1%[CrI:10.1%-12.2%],州级感染率从缅因州的0.3%[CrI:0.2%-0.4%]到宾夕法尼亚州的3.0%[CrI:1.1%-5.7%],血清阳性率从缅因州的1.4%[CrI:1.0%-2.0%]到纽约州的22%[CrI:18%-27%]。使用这种简单且易于交流的模型将提高做出有效应对当前大流行的公共卫生决策的能力。

作者简介

邱伟学博士是德克萨斯A&M大学环境健康科学教授。他是公共卫生相关动态系统数据驱动贝叶斯建模方面的专家。马蒂亚尔·L·恩德福-姆巴博士是德克萨斯A&M大学流行病学助理教授。他是传染病数学和计算建模方面的专家。

总结

单独依赖报告病例和检测阳性率可能会导致对新冠病毒传播的错误推断,而通过使用它们的几何平均数作为新冠病毒感染率和传播的衡量指标,可以改进公共卫生决策。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验