IEEE Trans Biomed Eng. 2021 Jul;68(7):2251-2260. doi: 10.1109/TBME.2020.3049109. Epub 2021 Jun 17.
Continuous glucose monitoring (CGM) enables prediction of the future glucose concentration (GC) trajectory for making informed diabetes management decisions. The glucose concentration values are affected by various physiological and metabolic variations, such as physical activity (PA) and acute psychological stress (APS), in addition to meals and insulin. In this work, we extend our adaptive glucose modeling framework to incorporate the effects of PA and APS on the GC predictions.
A wristband conducive of use by free-living ambulatory people is used. The measured physiological variables are analyzed to generate new quantifiable input features for PA and APS. Machine learning techniques estimate the type and intensity of the PA and APS when they occur individually and concurrently. Variables quantifying the characteristics of both PA and APS are integrated as exogenous inputs in an adaptive system identification technique for enhancing the accuracy of GC predictions. Data from clinical experiments illustrate the improvement in GC prediction accuracy.
The average mean absolute error (MAE) of one-hour-ahead GC predictions with testing data decreases from 35.1 to 31.9 mg/dL (p-value = 0.01) with the inclusion of PA information, and it decreases from 16.9 to 14.2 mg/dL (p-value = 0.006) with the inclusion of PA and APS information.
The first-ever glucose prediction model is developed that incorporates measures of physical activity and acute psychological stress to improve GC prediction accuracy.
Modeling the effects of physical activity and acute psychological stress on glucose concentration values will improve diabetes management and enable informed meal, activity and insulin dosing decisions.
连续血糖监测(CGM)能够预测未来血糖浓度(GC)轨迹,从而做出明智的糖尿病管理决策。除了饮食和胰岛素外,血糖浓度值还受到各种生理和代谢变化的影响,如体力活动(PA)和急性心理应激(APS)。在这项工作中,我们扩展了自适应血糖建模框架,以纳入 PA 和 APS 对 GC 预测的影响。
使用适合自由活动的腕带。分析测量的生理变量,为 PA 和 APS 生成新的可量化输入特征。当 PA 和 APS 单独和同时发生时,机器学习技术估计其类型和强度。将量化 PA 和 APS 特征的变量作为外生输入集成到自适应系统识别技术中,以提高 GC 预测的准确性。临床实验数据说明了 GC 预测准确性的提高。
使用测试数据,包含 PA 信息后,一小时内 GC 预测的平均绝对误差(MAE)从 35.1 降至 31.9mg/dL(p 值=0.01),包含 PA 和 APS 信息后,从 16.9 降至 14.2mg/dL(p 值=0.006)。
首次开发了包含体力活动和急性心理应激测量值的血糖预测模型,以提高 GC 预测准确性。
对体力活动和急性心理应激对血糖浓度值的影响进行建模,将改善糖尿病管理并能够做出明智的饮食、活动和胰岛素剂量决策。