Suppr超能文献

体力活动和心理应激的检测及其对糖尿病管理中血糖浓度预测影响的评估。

Physical Activity and Psychological Stress Detection and Assessment of Their Effects on Glucose Concentration Predictions in Diabetes Management.

出版信息

IEEE Trans Biomed Eng. 2021 Jul;68(7):2251-2260. doi: 10.1109/TBME.2020.3049109. Epub 2021 Jun 17.

Abstract

OBJECTIVE

Continuous glucose monitoring (CGM) enables prediction of the future glucose concentration (GC) trajectory for making informed diabetes management decisions. The glucose concentration values are affected by various physiological and metabolic variations, such as physical activity (PA) and acute psychological stress (APS), in addition to meals and insulin. In this work, we extend our adaptive glucose modeling framework to incorporate the effects of PA and APS on the GC predictions.

METHODS

A wristband conducive of use by free-living ambulatory people is used. The measured physiological variables are analyzed to generate new quantifiable input features for PA and APS. Machine learning techniques estimate the type and intensity of the PA and APS when they occur individually and concurrently. Variables quantifying the characteristics of both PA and APS are integrated as exogenous inputs in an adaptive system identification technique for enhancing the accuracy of GC predictions. Data from clinical experiments illustrate the improvement in GC prediction accuracy.

RESULTS

The average mean absolute error (MAE) of one-hour-ahead GC predictions with testing data decreases from 35.1 to 31.9 mg/dL (p-value = 0.01) with the inclusion of PA information, and it decreases from 16.9 to 14.2 mg/dL (p-value = 0.006) with the inclusion of PA and APS information.

CONCLUSION

The first-ever glucose prediction model is developed that incorporates measures of physical activity and acute psychological stress to improve GC prediction accuracy.

SIGNIFICANCE

Modeling the effects of physical activity and acute psychological stress on glucose concentration values will improve diabetes management and enable informed meal, activity and insulin dosing decisions.

摘要

目的

连续血糖监测(CGM)能够预测未来血糖浓度(GC)轨迹,从而做出明智的糖尿病管理决策。除了饮食和胰岛素外,血糖浓度值还受到各种生理和代谢变化的影响,如体力活动(PA)和急性心理应激(APS)。在这项工作中,我们扩展了自适应血糖建模框架,以纳入 PA 和 APS 对 GC 预测的影响。

方法

使用适合自由活动的腕带。分析测量的生理变量,为 PA 和 APS 生成新的可量化输入特征。当 PA 和 APS 单独和同时发生时,机器学习技术估计其类型和强度。将量化 PA 和 APS 特征的变量作为外生输入集成到自适应系统识别技术中,以提高 GC 预测的准确性。临床实验数据说明了 GC 预测准确性的提高。

结果

使用测试数据,包含 PA 信息后,一小时内 GC 预测的平均绝对误差(MAE)从 35.1 降至 31.9mg/dL(p 值=0.01),包含 PA 和 APS 信息后,从 16.9 降至 14.2mg/dL(p 值=0.006)。

结论

首次开发了包含体力活动和急性心理应激测量值的血糖预测模型,以提高 GC 预测准确性。

意义

对体力活动和急性心理应激对血糖浓度值的影响进行建模,将改善糖尿病管理并能够做出明智的饮食、活动和胰岛素剂量决策。

相似文献

4
Discrimination of simultaneous psychological and physical stressors using wristband biosignals.利用腕带生物信号区分心理和身体应激源。
Comput Methods Programs Biomed. 2021 Feb;199:105898. doi: 10.1016/j.cmpb.2020.105898. Epub 2020 Dec 17.

引用本文的文献

1
Metabolic Models, in Silico Trials, and Algorithms.代谢模型、虚拟试验与算法
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
5
Enhancing the Capabilities of Continuous Glucose Monitoring With a Predictive App.利用预测型 APP 提升连续血糖监测能力
J Diabetes Sci Technol. 2024 Sep;18(5):1014-1026. doi: 10.1177/19322968241267818. Epub 2024 Aug 19.
9
Recent advances in the precision control strategy of artificial pancreas.人工胰腺精准控制策略的最新进展。
Med Biol Eng Comput. 2024 Jun;62(6):1615-1638. doi: 10.1007/s11517-024-03042-x. Epub 2024 Feb 28.

本文引用的文献

2
The competitive athlete with type 1 diabetes.1 型糖尿病患者运动员
Diabetologia. 2020 Aug;63(8):1475-1490. doi: 10.1007/s00125-020-05183-8. Epub 2020 Jun 12.
5
Accuracy and Precision of the COSMED K5 Portable Analyser.COSMED K5便携式分析仪的准确性和精密度
Front Physiol. 2018 Dec 21;9:1764. doi: 10.3389/fphys.2018.01764. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验