Suppr超能文献

基于多损失融合卷积神经网络的源优化迁移学习的运动想象解码

Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN.

作者信息

Ma Jun, Yang Banghua, Rong Fenqi, Gao Shouwei, Wang Wen

机构信息

School of Mechatronic Engineering and Automation, School of Medicine, Research Center of Brain-Computer Engineering, Shanghai University, Shanghai, 200444 China.

Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038 Shaanxi China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2521-2534. doi: 10.1007/s11571-024-10100-5. Epub 2024 Apr 10.

Abstract

Transfer learning is increasingly used to decode multi-class motor imagery tasks. Previous transfer learning ignored the optimizability of the source model, weakened the adaptability to the target domain and limited the performance. This paper first proposes the multi-loss fusion convolutional neural network (MF-CNN) to make an optimizable source model. Then we propose a novel source optimized transfer learning (SOTL), which optimizes the source model to make it more in line with the target domain's features to improve the target model's performance. We transfer the model trained from 16 healthy subjects to 16 stroke patients. The average classification accuracy achieves 51.2 ± 0.17% in the four types of unilateral upper limb motor imagery tasks, which is significantly higher than the classification accuracy of deep learning ( < 0.001) and transfer learning ( < 0.05). In this paper, an MI model from the data of healthy subjects can be used for the classification of stroke patients and can demonstrate good classification results, which provides experiential support for the study of transfer learning and the modeling of stroke rehabilitation training.

摘要

迁移学习越来越多地用于解码多类运动想象任务。以往的迁移学习忽略了源模型的可优化性,削弱了对目标域的适应性,限制了性能。本文首先提出多损失融合卷积神经网络(MF-CNN)以构建可优化的源模型。然后我们提出了一种新颖的源优化迁移学习(SOTL),它对源模型进行优化,使其更符合目标域的特征,以提高目标模型的性能。我们将从16名健康受试者训练的模型迁移到16名中风患者身上。在四种类型的单侧上肢运动想象任务中,平均分类准确率达到51.2±0.17%,显著高于深度学习的分类准确率(<0.001)和迁移学习的分类准确率(<0.05)。本文中,来自健康受试者数据的运动想象模型可用于中风患者的分类,并能展示出良好的分类结果,这为迁移学习研究和中风康复训练建模提供了经验支持。

相似文献

1
Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN.
Cogn Neurodyn. 2024 Oct;18(5):2521-2534. doi: 10.1007/s11571-024-10100-5. Epub 2024 Apr 10.
4
A bimodal deep learning network based on CNN for fine motor imagery.
Cogn Neurodyn. 2024 Dec;18(6):3791-3804. doi: 10.1007/s11571-024-10159-0. Epub 2024 Aug 19.
6
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
8
An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms.
Cogn Neurodyn. 2024 Oct;18(5):2689-2707. doi: 10.1007/s11571-024-10115-y. Epub 2024 May 3.

引用本文的文献

本文引用的文献

1
Recognizable rehabilitation movements of multiple unilateral upper limb: An fMRI study of motor execution and motor imagery.
J Neurosci Methods. 2023 May 15;392:109861. doi: 10.1016/j.jneumeth.2023.109861. Epub 2023 Apr 17.
2
Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:1321-1332. doi: 10.1109/TNSRE.2023.3244045.
3
Flexible coding scheme for robotic arm control driven by motor imagery decoding.
J Neural Eng. 2022 Sep 7;19(5). doi: 10.1088/1741-2552/ac84a9.
4
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification.
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10955-10969. doi: 10.1109/TNNLS.2022.3172108. Epub 2023 Nov 30.
5
A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network.
Cogn Neurodyn. 2022 Apr;16(2):379-389. doi: 10.1007/s11571-021-09721-x. Epub 2021 Sep 28.
6
Motor imagery EEG decoding using manifold embedded transfer learning.
J Neurosci Methods. 2022 Mar 15;370:109489. doi: 10.1016/j.jneumeth.2022.109489. Epub 2022 Jan 25.
7
A transfer learning framework based on motor imagery rehabilitation for stroke.
Sci Rep. 2021 Oct 5;11(1):19783. doi: 10.1038/s41598-021-99114-1.
8
Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
Neural Netw. 2021 Apr;136:1-10. doi: 10.1016/j.neunet.2020.12.013. Epub 2020 Dec 23.
9
EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2773-2782. doi: 10.1109/TNSRE.2020.3048106. Epub 2021 Jan 28.
10
Predicting Human Intention-Behavior Through EEG Signal Analysis Using Multi-Scale CNN.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1722-1729. doi: 10.1109/TCBB.2020.3039834. Epub 2021 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验