Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, NH, USA.
Methods Mol Biol. 2021;2260:197-205. doi: 10.1007/978-1-0716-1182-1_13.
Infection tissue microenvironments are dynamic, complex, and play a critical role in host-microbe interaction outcomes. A crucial parameter of the infection site microenvironment is oxygen. Both host and microbial cell physiology is significantly impacted by the availability of oxygen. When oxygen tensions drop to levels that do not meet the metabolic demands of the cell, a hypoxia response ensues. In numerous host-microbe studies, it has now been observed that the host and microbial hypoxia response plays a critical role in disease outcomes. However, in most pathosystems, spatial and temporal oxygen dynamics throughout the infection remain ill defined. Here, we detail a protocol for detecting low oxygen environments in tissue in a murine model of invasive pulmonary aspergillosis. The protocol utilizes mice immune compromised with a high dose of steroid and challenged via the aerosol route with conidia of the major human fungal pathogen Aspergillus fumigatus. Qualitative analysis of oxygen levels at the site of infection in the murine lung is accomplished with pimonidazole-mediated adduct detection via immunohistochemistry. The protocol is adaptable to other host-microbe interaction models.
感染组织的微环境是动态的、复杂的,在宿主-微生物相互作用的结果中起着关键作用。感染部位微环境的一个关键参数是氧气。宿主和微生物细胞的生理机能都会受到氧气供应的显著影响。当氧张力下降到不能满足细胞代谢需求的水平时,就会发生缺氧反应。在许多宿主-微生物研究中,现在已经观察到宿主和微生物的缺氧反应在疾病结果中起着关键作用。然而,在大多数病原体系统中,整个感染过程中的空间和时间氧动力学仍然不清楚。在这里,我们详细介绍了一种在侵袭性肺曲霉病的小鼠模型中检测组织中低氧环境的方案。该方案利用高剂量类固醇免疫抑制的小鼠,并通过气溶胶途径用主要的人类真菌病原体烟曲霉的分生孢子进行挑战。通过免疫组织化学检测 pimonidazole 介导的加合物来定性分析小鼠肺部感染部位的氧水平。该方案适用于其他宿主-微生物相互作用模型。