Suppr超能文献

探索锰对多孔铁基支架微观结构、力学性能、生物降解性和生物相容性的作用。

Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds.

作者信息

Dargusch Matthew S, Dehghan-Manshadi Ali, Shahbazi Mahboobeh, Venezuela Jeffrey, Tran Xuan, Song Jing, Liu Na, Xu Chun, Ye Qinsong, Wen Cuie

机构信息

Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Institute for Future Environments (IFE), Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia.

出版信息

ACS Biomater Sci Eng. 2019 Apr 8;5(4):1686-1702. doi: 10.1021/acsbiomaterials.8b01497. Epub 2019 Mar 21.

Abstract

In this work, the role that manganese plays in determining the structure and performance of sintered biodegradable porous Fe-Mn alloys is described. Powder metallurgy processing was employed to produce a series of biodegradable porous Fe-Mn ( = 20, 30, and 35 wt %) alloys suitable for bone scaffold applications. Increasing manganese content increased the porosity volume in the sintered alloys and influenced the ensuing properties of the metal. The Fe-35Mn alloy possessed optimum properties for orthopedic application. X-ray diffraction analysis and magnetic characterization confirmed the predominance of the antiferromagnetic austenitic phase and ensured the magnetic resonance imaging (MRI) compatibility of this alloy. The porous Fe-35Mn alloy possessed mechanical properties (tensile strength of 144 MPa, elastic modulus of 53.3 GPa) comparable to human cortical bone. The alloy exhibited high degradation rates (0.306 mm year) in simulated physiological fluid, likely due to its considerable Mn content and the high surface area inherent to its porous structures, while cytotoxicity and morphometry tests using mammalian preosteoblast cells (MC3T3-E1) indicated good cell viability in the Fe-35Mn alloy.

摘要

在这项工作中,描述了锰在确定烧结可生物降解多孔铁锰合金的结构和性能方面所起的作用。采用粉末冶金工艺制备了一系列适用于骨支架应用的可生物降解多孔铁锰(=20、30和35 wt%)合金。增加锰含量会增加烧结合金中的孔隙体积,并影响金属随后的性能。Fe-35Mn合金具有适合骨科应用的最佳性能。X射线衍射分析和磁性表征证实了反铁磁奥氏体相的主导地位,并确保了该合金的磁共振成像(MRI)兼容性。多孔Fe-35Mn合金具有与人体皮质骨相当的力学性能(抗拉强度为144 MPa,弹性模量为53.3 GPa)。该合金在模拟生理流体中表现出高降解率(0.306 mm/年),这可能归因于其相当高的锰含量以及多孔结构固有的高表面积,而使用哺乳动物前成骨细胞(MC3T3-E1)进行的细胞毒性和形态测定测试表明,Fe-35Mn合金具有良好的细胞活力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验