Suppr超能文献

一种基于卫星的时空机器学习模型,用于重建英国各地的每日细颗粒物浓度。

A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM Concentrations across Great Britain.

作者信息

Schneider Rochelle, Vicedo-Cabrera Ana M, Sera Francesco, Masselot Pierre, Stafoggia Massimo, de Hoogh Kees, Kloog Itai, Reis Stefan, Vieno Massimo, Gasparrini Antonio

机构信息

Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK.

The Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK.

出版信息

Remote Sens (Basel). 2020 Nov 20;12(22):3803. doi: 10.3390/rs12223803. eCollection 2020 Nov.

Abstract

Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM) levels across Great Britain between 2008-2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM series using co-located PM measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM. Stage-4 applies Stage-3 models to estimate daily PM concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM.

摘要

关于空气污染对健康影响的流行病学研究通常依赖于固定地面监测器的测量数据,但其时空覆盖范围有限。卫星数据、再分析数据和化学传输模型提供了额外信息,可用于在高时空分辨率下重建污染浓度。本研究旨在开发一种基于卫星的多阶段机器学习模型,以估算2008年至2018年英国各地的每日细颗粒物(PM)水平。这个高分辨率模型由四个阶段应用的随机森林(RF)算法组成。第一阶段使用共置的PM测量值增强监测器的PM序列。第二阶段使用大气再分析模型估算缺失的卫星气溶胶光学厚度观测值。第三阶段将前几个阶段的输出与空间和时空变量相结合,构建PM预测模型。第四阶段应用第三阶段的模型估算1公里网格上的每日PM浓度。RF架构在所有阶段都表现良好,第三阶段的结果显示平均交叉验证R值为0.767,偏差最小。与空间分量相比,该模型在时间尺度上表现更好,但两者的准确率都很高,R值分别为0.795和0.658。这些发现表明,必须将卫星直接观测数据与其他基于卫星的产品和地理空间变量相结合,才能得出可靠的空气污染暴露估计值。高时空分辨率和相对较高的精度使得这些估计值(约9.5亿个点)可用于流行病学分析,以评估与短期和长期暴露于PM相关的健康风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f1/7116547/59004eeea0ca/EMS104896-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验