Sharma Arunima, Pramanik Manojit
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.
In acoustic resolution photoacoustic microscopy (AR-PAM), a high numerical aperture focused ultrasound transducer (UST) is used for deep tissue high resolution photoacoustic imaging. There is a significant degradation of lateral resolution in the out-of-focus region. Improvement in out-of-focus resolution without degrading the image quality remains a challenge. In this work, we propose a deep learning-based method to improve the resolution of AR-PAM images, especially at the out of focus plane. A modified fully dense U-Net based architecture was trained on simulated AR-PAM images. Applying the trained model on experimental images showed that the variation in resolution is ∼10% across the entire imaging depth (∼4 mm) in the deep learning-based method, compared to ∼180% variation in the original PAM images. Performance of the trained network on rat vasculature imaging further validated that noise-free, high resolution images can be obtained using this method.
在声学分辨率光声显微镜(AR-PAM)中,高数值孔径聚焦超声换能器(UST)用于深部组织的高分辨率光声成像。在离焦区域,横向分辨率会显著下降。在不降低图像质量的情况下提高离焦分辨率仍然是一个挑战。在这项工作中,我们提出了一种基于深度学习的方法来提高AR-PAM图像的分辨率,特别是在离焦平面处。在模拟的AR-PAM图像上训练了一种基于改进的全密集U-Net的架构。将训练好的模型应用于实验图像表明,基于深度学习的方法在整个成像深度(约4毫米)上分辨率变化约为10%,而原始PAM图像的分辨率变化约为180%。训练好的网络在大鼠血管成像上的性能进一步验证了使用该方法可以获得无噪声的高分辨率图像。