Suppr超能文献

用于声学分辨率光声显微镜分辨率增强和降噪的卷积神经网络。

Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy.

作者信息

Sharma Arunima, Pramanik Manojit

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.

出版信息

Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.

Abstract

In acoustic resolution photoacoustic microscopy (AR-PAM), a high numerical aperture focused ultrasound transducer (UST) is used for deep tissue high resolution photoacoustic imaging. There is a significant degradation of lateral resolution in the out-of-focus region. Improvement in out-of-focus resolution without degrading the image quality remains a challenge. In this work, we propose a deep learning-based method to improve the resolution of AR-PAM images, especially at the out of focus plane. A modified fully dense U-Net based architecture was trained on simulated AR-PAM images. Applying the trained model on experimental images showed that the variation in resolution is ∼10% across the entire imaging depth (∼4 mm) in the deep learning-based method, compared to ∼180% variation in the original PAM images. Performance of the trained network on rat vasculature imaging further validated that noise-free, high resolution images can be obtained using this method.

摘要

在声学分辨率光声显微镜(AR-PAM)中,高数值孔径聚焦超声换能器(UST)用于深部组织的高分辨率光声成像。在离焦区域,横向分辨率会显著下降。在不降低图像质量的情况下提高离焦分辨率仍然是一个挑战。在这项工作中,我们提出了一种基于深度学习的方法来提高AR-PAM图像的分辨率,特别是在离焦平面处。在模拟的AR-PAM图像上训练了一种基于改进的全密集U-Net的架构。将训练好的模型应用于实验图像表明,基于深度学习的方法在整个成像深度(约4毫米)上分辨率变化约为10%,而原始PAM图像的分辨率变化约为180%。训练好的网络在大鼠血管成像上的性能进一步验证了使用该方法可以获得无噪声的高分辨率图像。

相似文献

10
Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning.使用深度学习重建欠采样光声显微镜图像。
IEEE Trans Med Imaging. 2021 Feb;40(2):562-570. doi: 10.1109/TMI.2020.3031541. Epub 2021 Feb 3.

引用本文的文献

5
4D spectral-spatial computational photoacoustic dermoscopy.4D光谱空间计算光声皮肤镜检查
Photoacoustics. 2023 Nov 10;34:100572. doi: 10.1016/j.pacs.2023.100572. eCollection 2023 Dec.

本文引用的文献

1
Deep learning protocol for improved photoacoustic brain imaging.深度学习协议提高光声脑成像。
J Biophotonics. 2020 Oct;13(10):e202000212. doi: 10.1002/jbio.202000212. Epub 2020 Aug 17.
2
Hybrid deep learning network for vascular segmentation in photoacoustic imaging.用于光声成像中血管分割的混合深度学习网络。
Biomed Opt Express. 2020 Oct 16;11(11):6445-6457. doi: 10.1364/BOE.409246. eCollection 2020 Nov 1.
3
Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning.使用深度学习重建欠采样光声显微镜图像。
IEEE Trans Med Imaging. 2021 Feb;40(2):562-570. doi: 10.1109/TMI.2020.3031541. Epub 2021 Feb 3.
4
End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging.基于端到端Res-Unet的光声成像重建算法
Biomed Opt Express. 2020 Aug 27;11(9):5321-5340. doi: 10.1364/BOE.396598. eCollection 2020 Sep 1.
5
Deep learning improves contrast in low-fluence photoacoustic imaging.深度学习可改善低通量光声成像中的对比度。
Biomed Opt Express. 2020 May 29;11(6):3360-3373. doi: 10.1364/BOE.395683. eCollection 2020 Jun 1.
7
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.深度学习在实时光声系统中的图像重建。
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验