Suppr超能文献

用于声学分辨率光声显微镜分辨率增强和降噪的卷积神经网络。

Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy.

作者信息

Sharma Arunima, Pramanik Manojit

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.

出版信息

Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.

Abstract

In acoustic resolution photoacoustic microscopy (AR-PAM), a high numerical aperture focused ultrasound transducer (UST) is used for deep tissue high resolution photoacoustic imaging. There is a significant degradation of lateral resolution in the out-of-focus region. Improvement in out-of-focus resolution without degrading the image quality remains a challenge. In this work, we propose a deep learning-based method to improve the resolution of AR-PAM images, especially at the out of focus plane. A modified fully dense U-Net based architecture was trained on simulated AR-PAM images. Applying the trained model on experimental images showed that the variation in resolution is ∼10% across the entire imaging depth (∼4 mm) in the deep learning-based method, compared to ∼180% variation in the original PAM images. Performance of the trained network on rat vasculature imaging further validated that noise-free, high resolution images can be obtained using this method.

摘要

在声学分辨率光声显微镜(AR-PAM)中,高数值孔径聚焦超声换能器(UST)用于深部组织的高分辨率光声成像。在离焦区域,横向分辨率会显著下降。在不降低图像质量的情况下提高离焦分辨率仍然是一个挑战。在这项工作中,我们提出了一种基于深度学习的方法来提高AR-PAM图像的分辨率,特别是在离焦平面处。在模拟的AR-PAM图像上训练了一种基于改进的全密集U-Net的架构。将训练好的模型应用于实验图像表明,基于深度学习的方法在整个成像深度(约4毫米)上分辨率变化约为10%,而原始PAM图像的分辨率变化约为180%。训练好的网络在大鼠血管成像上的性能进一步验证了使用该方法可以获得无噪声的高分辨率图像。

相似文献

1
Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy.
Biomed Opt Express. 2020 Nov 3;11(12):6826-6839. doi: 10.1364/BOE.411257. eCollection 2020 Dec 1.
2
Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging deep CNN prior.
Photoacoustics. 2023 Apr 1;30:100484. doi: 10.1016/j.pacs.2023.100484. eCollection 2023 Apr.
3
Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network.
Biomed Opt Express. 2022 Jul 27;13(8):4386-4397. doi: 10.1364/BOE.461183. eCollection 2022 Aug 1.
4
Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution.
IEEE Trans Med Imaging. 2022 Dec;41(12):3636-3648. doi: 10.1109/TMI.2022.3192072. Epub 2022 Dec 2.
6
Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique.
Photoacoustics. 2021 Dec 24;26:100328. doi: 10.1016/j.pacs.2021.100328. eCollection 2022 Jun.
7
High-resolution photoacoustic microscopy with deep penetration through learning.
Photoacoustics. 2021 Nov 3;25:100314. doi: 10.1016/j.pacs.2021.100314. eCollection 2022 Mar.
8
A Novel 2-D Synthetic Aperture Focusing Technique for Acoustic-Resolution Photoacoustic Microscopy.
IEEE Trans Med Imaging. 2019 Jan;38(1):250-260. doi: 10.1109/TMI.2018.2861400. Epub 2018 Jul 31.
9
Reconstructing Cancellous Bone From Down-Sampled Optical-Resolution Photoacoustic Microscopy Images With Deep Learning.
Ultrasound Med Biol. 2024 Sep;50(9):1459-1471. doi: 10.1016/j.ultrasmedbio.2024.05.027. Epub 2024 Jul 7.
10
Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning.
IEEE Trans Med Imaging. 2021 Feb;40(2):562-570. doi: 10.1109/TMI.2020.3031541. Epub 2021 Feb 3.

引用本文的文献

1
Reduction of photobleaching effects in photoacoustic imaging using noise agnostic, platform-flexible deep-learning methods.
J Biomed Opt. 2025 Dec;30(Suppl 3):S34102. doi: 10.1117/1.JBO.30.S3.S34102. Epub 2025 May 28.
2
High resolution photoacoustic vascular image reconstruction through the fast residual dense generative adversarial network.
Photoacoustics. 2025 Apr 1;43:100720. doi: 10.1016/j.pacs.2025.100720. eCollection 2025 Jun.
3
UPAMNet: A unified network with deep knowledge priors for photoacoustic microscopy.
Photoacoustics. 2024 Apr 25;38:100608. doi: 10.1016/j.pacs.2024.100608. eCollection 2024 Aug.
4
Accelerating photoacoustic microscopy by reconstructing undersampled images using diffusion models.
Sci Rep. 2024 Jul 23;14(1):16996. doi: 10.1038/s41598-024-67957-z.
5
4D spectral-spatial computational photoacoustic dermoscopy.
Photoacoustics. 2023 Nov 10;34:100572. doi: 10.1016/j.pacs.2023.100572. eCollection 2023 Dec.
6
Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast.
Photoacoustics. 2023 Jul 17;32:100533. doi: 10.1016/j.pacs.2023.100533. eCollection 2023 Aug.
10
Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging deep CNN prior.
Photoacoustics. 2023 Apr 1;30:100484. doi: 10.1016/j.pacs.2023.100484. eCollection 2023 Apr.

本文引用的文献

1
Deep learning protocol for improved photoacoustic brain imaging.
J Biophotonics. 2020 Oct;13(10):e202000212. doi: 10.1002/jbio.202000212. Epub 2020 Aug 17.
2
Hybrid deep learning network for vascular segmentation in photoacoustic imaging.
Biomed Opt Express. 2020 Oct 16;11(11):6445-6457. doi: 10.1364/BOE.409246. eCollection 2020 Nov 1.
3
Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning.
IEEE Trans Med Imaging. 2021 Feb;40(2):562-570. doi: 10.1109/TMI.2020.3031541. Epub 2021 Feb 3.
4
End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging.
Biomed Opt Express. 2020 Aug 27;11(9):5321-5340. doi: 10.1364/BOE.396598. eCollection 2020 Sep 1.
5
Deep learning improves contrast in low-fluence photoacoustic imaging.
Biomed Opt Express. 2020 May 29;11(6):3360-3373. doi: 10.1364/BOE.395683. eCollection 2020 Jun 1.
6
Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning.
Sci Rep. 2020 May 22;10(1):8510. doi: 10.1038/s41598-020-65235-2.
7
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.
8
Deep-learning-based motion-correction algorithm in optical resolution photoacoustic microscopy.
Vis Comput Ind Biomed Art. 2019 Oct 29;2(1):12. doi: 10.1186/s42492-019-0022-9.
9
A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer.
Exp Biol Med (Maywood). 2020 Apr;245(7):597-605. doi: 10.1177/1535370220914285. Epub 2020 Mar 25.
10
Deep Neural Network-Based Sinogram Super-Resolution and Bandwidth Enhancement for Limited-Data Photoacoustic Tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2660-2673. doi: 10.1109/TUFFC.2020.2977210. Epub 2020 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验