Suppr超能文献

深度学习在实时光声系统中的图像重建。

Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.

Abstract

Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.

摘要

近年来,光声(PA)成像技术的发展使得对微血管结构的详细成像和血氧或灌注的定量测量成为可能。PA 成像的标准重建方法基于使用适当的信号和系统模型来解决逆问题。然而,对于手持式扫描仪,由于检测视场和带宽的限制,不适定条件导致在大多数情况下图像对比度低且结构严重丢失。在本文中,我们提出了一种基于深度卷积神经网络(CNN)的实用重建方法来克服这些问题。它是为实时临床应用而设计的,并通过模拟典型微血管网络的大规模合成数据进行训练。使用合成和真实数据集的实验结果证实,与传统方法相比,深度学习方法提供了更好的重建效果。

相似文献

1
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.深度学习在实时光声系统中的图像重建。
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.
2
Hybrid Neural Network for Photoacoustic Imaging Reconstruction.用于光声成像重建的混合神经网络
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6367-6370. doi: 10.1109/EMBC.2019.8857019.

引用本文的文献

1
Artifacts in photoacoustic imaging: Origins and mitigations.光声成像中的伪像:起源与抑制
Photoacoustics. 2025 Jul 5;45:100745. doi: 10.1016/j.pacs.2025.100745. eCollection 2025 Oct.
10
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging.深度学习在交迭光声与超声(PAUS)成像中的应用综述。
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Dec;70(12):1591-1606. doi: 10.1109/TUFFC.2023.3329119. Epub 2023 Dec 14.

本文引用的文献

2
Adaptive Ultrasound Beamforming Using Deep Learning.基于深度学习的自适应超声波束形成
IEEE Trans Med Imaging. 2020 Dec;39(12):3967-3978. doi: 10.1109/TMI.2020.3008537. Epub 2020 Nov 30.
3
Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound.基于深度学习的医学超声自适应与压缩波束形成
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1558-1572. doi: 10.1109/TUFFC.2020.2977202. Epub 2020 Mar 5.
4
A review of clinical photoacoustic imaging: Current and future trends.临床光声成像综述:现状与未来趋势
Photoacoustics. 2019 Nov 7;16:100144. doi: 10.1016/j.pacs.2019.100144. eCollection 2019 Dec.
5
Generative adversarial network in medical imaging: A review.生成对抗网络在医学影像中的应用:综述
Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.
6
Photoacoustic clinical imaging.光声临床成像。
Photoacoustics. 2019 Jun 8;14:77-98. doi: 10.1016/j.pacs.2019.05.001. eCollection 2019 Jun.
7
A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation.基于部分学习的光声联合重建与分割算法。
IEEE Trans Med Imaging. 2020 Jan;39(1):129-139. doi: 10.1109/TMI.2019.2922026. Epub 2019 Jun 10.
9
Deep learning for photoacoustic tomography from sparse data.基于稀疏数据的光声层析成像深度学习方法
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验