Suppr超能文献

用于光声成像中血管分割的混合深度学习网络。

Hybrid deep learning network for vascular segmentation in photoacoustic imaging.

作者信息

Yuan Alan Yilun, Gao Yang, Peng Liangliang, Zhou Lingxiao, Liu Jun, Zhu Siwei, Song Wei

机构信息

Department of Electrical and Electronic Engineering, Imperial College London, London, UK.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2020 Oct 16;11(11):6445-6457. doi: 10.1364/BOE.409246. eCollection 2020 Nov 1.

Abstract

Photoacoustic (PA) technology has been used extensively on vessel imaging due to its capability of identifying molecular specificities and achieving high optical-diffraction-limited lateral resolution down to the cellular level. Vessel images carry essential medical information that provides guidelines for a professional diagnosis. Modern image processing techniques provide a decent contribution to vessel segmentation. However, these methods suffer from under or over-segmentation. Thus, we demonstrate both the results of adopting a fully convolutional network and U-net, and propose a hybrid network consisting of both applied on PA vessel images. Comparison results indicate that the hybrid network can significantly increase the segmentation accuracy and robustness.

摘要

由于光声(PA)技术能够识别分子特异性并实现高达细胞水平的光学衍射极限横向分辨率,因此已广泛应用于血管成像。血管图像携带重要的医学信息,为专业诊断提供指导。现代图像处理技术对血管分割有很大贡献。然而,这些方法存在分割不足或过度分割的问题。因此,我们展示了采用全卷积网络和U-net的结果,并提出了一种将两者结合应用于PA血管图像的混合网络。比较结果表明,混合网络可以显著提高分割的准确性和鲁棒性。

相似文献

1
Hybrid deep learning network for vascular segmentation in photoacoustic imaging.用于光声成像中血管分割的混合深度学习网络。
Biomed Opt Express. 2020 Oct 16;11(11):6445-6457. doi: 10.1364/BOE.409246. eCollection 2020 Nov 1.
6
Hybrid Neural Network for Photoacoustic Imaging Reconstruction.用于光声成像重建的混合神经网络
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6367-6370. doi: 10.1109/EMBC.2019.8857019.
10
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.

引用本文的文献

5
Multi-level optical angiography for photodynamic therapy.用于光动力疗法的多层光学血管造影术。
Biomed Opt Express. 2023 Feb 9;14(3):1082-1095. doi: 10.1364/BOE.473644. eCollection 2023 Mar 1.
9
Photoacoustic imaging aided with deep learning: a review.深度学习辅助的光声成像综述
Biomed Eng Lett. 2021 Nov 23;12(2):155-173. doi: 10.1007/s13534-021-00210-y. eCollection 2022 May.

本文引用的文献

2
A review of clinical photoacoustic imaging: Current and future trends.临床光声成像综述:现状与未来趋势
Photoacoustics. 2019 Nov 7;16:100144. doi: 10.1016/j.pacs.2019.100144. eCollection 2019 Dec.
5
Thermal Memory Based Photoacoustic Imaging of Temperature.基于热记忆的温度光声成像
Optica. 2019 Feb;6(2):198-205. doi: 10.1364/OPTICA.6.000198. Epub 2019 Feb 14.
7
A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation.基于部分学习的光声联合重建与分割算法。
IEEE Trans Med Imaging. 2020 Jan;39(1):129-139. doi: 10.1109/TMI.2019.2922026. Epub 2019 Jun 10.
9
Deep learning for photoacoustic tomography from sparse data.基于稀疏数据的光声层析成像深度学习方法
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.
10
Motion Correction in Optical Resolution Photoacoustic Microscopy.光分辨光声显微镜中的运动校正。
IEEE Trans Med Imaging. 2019 Sep;38(9):2139-2150. doi: 10.1109/TMI.2019.2893021. Epub 2019 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验