Suppr超能文献

使用核密度过滤空间点模式

Filtering Spatial Point Patterns Using Kernel Densities.

作者信息

Vestal Brian E, Carlson Nichole E, Ghosh Debashis

机构信息

Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.

Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.

出版信息

Spat Stat. 2021 Mar;41. doi: 10.1016/j.spasta.2020.100487. Epub 2020 Dec 10.

Abstract

Understanding spatial inhomogeneity and clustering in point patterns arises in many contexts, ranging from disease outbreak monitoring to analyzing radiologically-based emphysema in biomedical images. This can often involve classifying individual points as being part of a feature/cluster or as being part of a background noise process. Existing methods for this task can struggle when there are differences in the size and/or density of individual clusters. In this work, we propose employing kernel density estimates of the underlying point process intensity function, using an existing data-driven approach to bandwidth selection, to separate feature points from noise. This is achieved by constructing a null distribution, either through asymptotic properties or Monte Carlo simulation, and comparing kernel density estimates to a given quantile of this distribution. We demonstrate that our method, termed Kernel Density and Simulation based Filtering (KDS-Filt), showed superior performance to existing alternative approaches, especially when there is inhomogeneity in cluster sizes and density. We also show the utility of KDS-Filt for identifying clinically relevant information about the spatial distribution of emphysema in lung computed tomography scans. The KDS-Filt methodology is available as part of the sncp R package, which can be downloaded at https://github.com/stop-pre16/sncp.

摘要

理解点模式中的空间不均匀性和聚类现象在许多情况下都会出现,从疾病爆发监测到分析生物医学图像中基于放射学的肺气肿。这通常涉及将单个点分类为特征/聚类的一部分或背景噪声过程的一部分。当各个聚类的大小和/或密度存在差异时,现有的用于此任务的方法可能会遇到困难。在这项工作中,我们建议使用潜在点过程强度函数的核密度估计,并采用现有的数据驱动方法进行带宽选择,以将特征点与噪声分离。这是通过构建一个空分布来实现的,该空分布可以通过渐近性质或蒙特卡罗模拟得到,并将核密度估计与该分布的给定分位数进行比较。我们证明,我们的方法,称为基于核密度和模拟的滤波(KDS-Filt),比现有的替代方法表现更优,特别是当聚类大小和密度存在不均匀性时。我们还展示了KDS-Filt在识别肺部计算机断层扫描中肺气肿空间分布的临床相关信息方面的效用。KDS-Filt方法作为sncp R包的一部分可用,该包可在https://github.com/stop-pre16/sncp下载。

相似文献

1
Filtering Spatial Point Patterns Using Kernel Densities.使用核密度过滤空间点模式
Spat Stat. 2021 Mar;41. doi: 10.1016/j.spasta.2020.100487. Epub 2020 Dec 10.
10
Optimal bandwidth estimators of kernel density functionals for contaminated data.用于污染数据的核密度泛函的最优带宽估计器。
J Appl Stat. 2021 Jul 11;48(13-15):2239-2258. doi: 10.1080/02664763.2021.1944999. eCollection 2021.

本文引用的文献

4
Coupled Immunological and Biomechanical Model of Emphysema Progression.肺气肿进展的免疫与生物力学耦合模型
Front Physiol. 2018 Apr 19;9:388. doi: 10.3389/fphys.2018.00388. eCollection 2018.
5
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort.在大型临床队列中对肺气肿亚型进行无监督发现
Mach Learn Med Imaging. 2016 Oct;10019:180-187. doi: 10.1007/978-3-319-47157-0_22. Epub 2016 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验