Li Riyao, Yu Hai, Muthana Saddam M, Freedberg Darón I, Chen Xi
Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States.
Department of Chemistry, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.
ACS Catal. 2020 Feb 21;10(4):2791-2798. doi: 10.1021/acscatal.9b05597. Epub 2020 Feb 7.
(Nm) serogroup W (NmW) is one of the six meningococcal serogroups that cause majority of invasive meningococcal diseases (IMD). Its capsular polysaccharide (CPS) is a virulence factor and is a key component in NmW CPS-protein conjugate vaccines. The current clinically used NmW CPS-protein conjugate vaccines are effective but the costs are high and the products are heterogeneous at both the CPS and the conjugate levels. Towards the development of potentially better NmW CPS vaccines, herein we report the synthesis of homogeneous oligosaccharides of NmW CPS in a size-controlled manner using polysaccharide synthase NmSiaD in a sequential one-pot multienzyme (OPME) platform. Taking advantage of the obtained structurally defined synthetic oligosaccharides tagged with a hydrophobic chromophore, detailed biochemical characterization of NmSiaD has been achieved. While the catalytic efficiency of the galactosyltransferase activity of NmSiaD increases dramatically with the increase of the sialoside acceptor substrate size, the size difference of the galactoside acceptor substrate does not influence NmSiaD sialyltransferase activity significantly. The ratio of donor and acceptor substrate concentrations, but not the size of the acceptor substrates, has been found to be the major determining factor for the sizes of the oligosaccharides produced. NmW CPS oligosaccharides with a degree of polymerization (DP) higher than 65 have been observed. The study provides a better understanding of NmSiaD capsular polysaccharide synthase and showcases an efficient chemoenzymatic synthetic platform for obtaining structurally defined NmW CPS oligosaccharides in a size-controlled manner.
W群脑膜炎奈瑟菌(NmW)是导致大多数侵袭性脑膜炎球菌病(IMD)的六种脑膜炎球菌血清群之一。其荚膜多糖(CPS)是一种毒力因子,是NmW CPS-蛋白质结合疫苗的关键成分。目前临床使用的NmW CPS-蛋白质结合疫苗有效,但成本高,且在CPS和结合物水平上产品均一性差。为了开发可能更好的NmW CPS疫苗,我们在此报告,利用多糖合酶NmSiaD,在连续一锅多酶(OPME)平台上以尺寸可控的方式合成了NmW CPS的均一寡糖。利用获得的带有疏水发色团的结构明确的合成寡糖,实现了对NmSiaD的详细生化表征。虽然NmSiaD的半乳糖基转移酶活性的催化效率随着唾液酸苷受体底物尺寸的增加而显著提高,但半乳糖苷受体底物的尺寸差异对NmSiaD的唾液酸转移酶活性影响不大。已发现供体和受体底物浓度的比例而非受体底物的尺寸是所产生寡糖尺寸的主要决定因素。已观察到聚合度(DP)高于65的NmW CPS寡糖。该研究为更好地理解NmSiaD荚膜多糖合酶提供了帮助,并展示了一个高效的化学酶促合成平台,用于以尺寸可控的方式获得结构明确的NmW CPS寡糖。