Müller Sabine, Weickert Joachim, Graf Norbert
Fraunhofer ITWM, Competence Center High Performance Computing, Kaiserslautern, Germany.
Fraunhofer Center Machine Learning, Germany.
J Med Imaging (Bellingham). 2020 Nov;7(6):064006. doi: 10.1117/1.JMI.7.6.064006. Epub 2020 Dec 30.
The segmentation of brain tumors is one of the most active areas of medical image analysis. While current methods perform superhuman on benchmark data sets, their applicability in daily clinical practice has not been evaluated. In this work, we investigate the generalization behavior of deep neural networks in this scenario. We evaluate the performance of three state-of-the-art methods, a basic U-Net architecture, and a cascadic Mumford-Shah approach. We also propose two simple modifications (which do not change the topology) to improve generalization performance. In these experiments, we show that a well-trained U-network shows the best generalization behavior and is sufficient to solve this segmentation problem. We illustrate why extensions of this model in a realistic scenario can be not only pointless but even harmful. We conclude from these experiments that the generalization performance of deep neural networks is severely limited in medical image analysis especially in the area of brain tumor segmentation. In our opinion, current topologies are optimized for the actual benchmark data set but are not directly applicable in daily clinical practice.
脑肿瘤分割是医学图像分析中最活跃的领域之一。虽然当前方法在基准数据集上表现超人,但它们在日常临床实践中的适用性尚未得到评估。在这项工作中,我们研究了在这种情况下深度神经网络的泛化行为。我们评估了三种最先进方法、一种基本的U-Net架构和一种级联的Mumford-Shah方法的性能。我们还提出了两种简单的修改(不改变拓扑结构)来提高泛化性能。在这些实验中,我们表明,一个训练良好的U网络表现出最佳的泛化行为,并且足以解决这个分割问题。我们说明了为什么在现实场景中扩展这个模型不仅毫无意义,甚至是有害的。我们从这些实验中得出结论,深度神经网络的泛化性能在医学图像分析中,尤其是在脑肿瘤分割领域,受到严重限制。我们认为,当前的拓扑结构是针对实际基准数据集进行优化的,但不能直接应用于日常临床实践。