Suppr超能文献

脑肿瘤分割的稳健性

Robustness of brain tumor segmentation.

作者信息

Müller Sabine, Weickert Joachim, Graf Norbert

机构信息

Fraunhofer ITWM, Competence Center High Performance Computing, Kaiserslautern, Germany.

Fraunhofer Center Machine Learning, Germany.

出版信息

J Med Imaging (Bellingham). 2020 Nov;7(6):064006. doi: 10.1117/1.JMI.7.6.064006. Epub 2020 Dec 30.

Abstract

The segmentation of brain tumors is one of the most active areas of medical image analysis. While current methods perform superhuman on benchmark data sets, their applicability in daily clinical practice has not been evaluated. In this work, we investigate the generalization behavior of deep neural networks in this scenario. We evaluate the performance of three state-of-the-art methods, a basic U-Net architecture, and a cascadic Mumford-Shah approach. We also propose two simple modifications (which do not change the topology) to improve generalization performance. In these experiments, we show that a well-trained U-network shows the best generalization behavior and is sufficient to solve this segmentation problem. We illustrate why extensions of this model in a realistic scenario can be not only pointless but even harmful. We conclude from these experiments that the generalization performance of deep neural networks is severely limited in medical image analysis especially in the area of brain tumor segmentation. In our opinion, current topologies are optimized for the actual benchmark data set but are not directly applicable in daily clinical practice.

摘要

脑肿瘤分割是医学图像分析中最活跃的领域之一。虽然当前方法在基准数据集上表现超人,但它们在日常临床实践中的适用性尚未得到评估。在这项工作中,我们研究了在这种情况下深度神经网络的泛化行为。我们评估了三种最先进方法、一种基本的U-Net架构和一种级联的Mumford-Shah方法的性能。我们还提出了两种简单的修改(不改变拓扑结构)来提高泛化性能。在这些实验中,我们表明,一个训练良好的U网络表现出最佳的泛化行为,并且足以解决这个分割问题。我们说明了为什么在现实场景中扩展这个模型不仅毫无意义,甚至是有害的。我们从这些实验中得出结论,深度神经网络的泛化性能在医学图像分析中,尤其是在脑肿瘤分割领域,受到严重限制。我们认为,当前的拓扑结构是针对实际基准数据集进行优化的,但不能直接应用于日常临床实践。

相似文献

1
Robustness of brain tumor segmentation.
J Med Imaging (Bellingham). 2020 Nov;7(6):064006. doi: 10.1117/1.JMI.7.6.064006. Epub 2020 Dec 30.
3
Mumford-Shah Loss Functional for Image Segmentation with Deep Learning.
IEEE Trans Image Process. 2019 Sep 27. doi: 10.1109/TIP.2019.2941265.
4
DENSE-INception U-net for medical image segmentation.
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.
5
A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation.
Comput Methods Programs Biomed. 2020 Dec;197:105678. doi: 10.1016/j.cmpb.2020.105678. Epub 2020 Jul 30.
6
Test-time adaptable neural networks for robust medical image segmentation.
Med Image Anal. 2021 Feb;68:101907. doi: 10.1016/j.media.2020.101907. Epub 2020 Nov 19.
7
DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
J Med Syst. 2019 Jun 8;43(7):221. doi: 10.1007/s10916-019-1358-6.
8
Tumor attention networks: Better feature selection, better tumor segmentation.
Neural Netw. 2021 Aug;140:203-222. doi: 10.1016/j.neunet.2021.03.006. Epub 2021 Mar 13.
9
ADR-Net: Context extraction network based on M-Net for medical image segmentation.
Med Phys. 2020 Sep;47(9):4254-4264. doi: 10.1002/mp.14364. Epub 2020 Aug 2.
10
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.

引用本文的文献

1
Clinical evaluation of two glioblastoma delineation methods based on neural networks.
Tech Innov Patient Support Radiat Oncol. 2025 Aug 6;35:100330. doi: 10.1016/j.tipsro.2025.100330. eCollection 2025 Sep.
2
Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation.
Neural Comput Appl. 2023;35(30):22071-22085. doi: 10.1007/s00521-022-08016-4. Epub 2022 Nov 17.
3
Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
Front Oncol. 2023 Feb 16;13:1115258. doi: 10.3389/fonc.2023.1115258. eCollection 2023.
4
Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor Segmentation With Uncertainty Estimation.
Front Neurol. 2021 Sep 30;12:609646. doi: 10.3389/fneur.2021.609646. eCollection 2021.

本文引用的文献

1
Benchmarking Wilms' tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?
J Med Imaging (Bellingham). 2019 Jul;6(3):034001. doi: 10.1117/1.JMI.6.3.034001. Epub 2019 Jul 19.
2
Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.
Proc SPIE Int Soc Opt Eng. 2018;2018. doi: 10.1117/12.2292930. Epub 2018 Feb 27.
4
Fast Edge Detection Using Structured Forests.
IEEE Trans Pattern Anal Mach Intell. 2015 Aug;37(8):1558-70. doi: 10.1109/TPAMI.2014.2377715.
5
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
6
Current status of immunotherapy and gene therapy for high-grade gliomas.
Cancer Control. 2013 Jan;20(1):43-8. doi: 10.1177/107327481302000107.
7
Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group.
J Clin Oncol. 2010 Apr 10;28(11):1963-72. doi: 10.1200/JCO.2009.26.3541. Epub 2010 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验