文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于神经网络的两种胶质母细胞瘤勾画方法的临床评估

Clinical evaluation of two glioblastoma delineation methods based on neural networks.

作者信息

Hansen Anders Traberg, Askglæde Johannes Thestrup, Kallehauge Jesper Folsted, Vittrup Anders Schwartz, Hochreuter Kim, Lukacova Slavka

机构信息

Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.

Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.

出版信息

Tech Innov Patient Support Radiat Oncol. 2025 Aug 6;35:100330. doi: 10.1016/j.tipsro.2025.100330. eCollection 2025 Sep.


DOI:10.1016/j.tipsro.2025.100330
PMID:40822088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12357038/
Abstract

BACKGROUND AND PURPOSE: Precise gross tumour volume definition is essential for radiotherapy. Neural networks may improve tumour delineation and reduce manual workload. However, clinical evaluation is crucial for understanding their precision and limitations. MATERIALS AND METHODS: Two neural network-based models were evaluated for glioblastoma delineation in 70 clinical cases: one developed by Cercare Medical Inc (CMN) and the publicly available Raidionics model. Delineations were compared using Hausdorff 95% (HD95) distance, Dice similarity coefficient (DSC) and the prevalence of false-positive and false-negative volumes. Additionally, interobserver variability between clinicians and the dosimetric consequences of differences in delineation were assessed. RESULTS: The Raidionics model achieved a mean HD95 of 5.61 mm, with a 5th and 95th percentile range of 2.13-14.8 mm, and a mean DSC of 0.80 [0.62, 0.92]. The CMN model achieved a mean HD95 of 4.24 mm [2.05, 10.2] and mean DSC of 0.83 [0.65, 0.93]. For both metrics the Wilcoxon rank test showed a significant difference (p < 0.002). Both models produced small false-positive volumes, averaging less than 10 % of the true volume. The false-negative volumes averaged around 20 % of the true tumour volume for both models. The HD95 and DSC of interobserver variability were found to be 2.91 mm and 0.89 respectively. CONCLUSION: The CMN performed significantly better than the Raidionics model. Both models demonstrated a low occurrence of false-positive delineations and acceptable robustness in preserving dose coverage. However, their performance remained inferior to clinical experts. Further model development is recommended before potential clinical implementation.

摘要

背景与目的:精确的肿瘤总体积定义对放射治疗至关重要。神经网络可改善肿瘤轮廓描绘并减少人工工作量。然而,临床评估对于了解其精度和局限性至关重要。 材料与方法:在70例临床病例中评估了两种基于神经网络的胶质母细胞瘤轮廓描绘模型:一种由Cercare Medical Inc(CMN)开发,另一种是公开可用的Raidionics模型。使用豪斯多夫95%(HD95)距离、骰子相似系数(DSC)以及假阳性和假阴性体积的发生率对轮廓描绘进行比较。此外,评估了临床医生之间的观察者间变异性以及轮廓描绘差异的剂量学后果。 结果:Raidionics模型的平均HD95为5.61毫米,第5和第95百分位数范围为2.13 - 14.8毫米,平均DSC为0.80[0.62, 0.92]。CMN模型的平均HD95为4.24毫米[2.05, 10.2],平均DSC为0.83[0.65, 0.93]。对于这两个指标,威尔科克森秩和检验显示存在显著差异(p < 0.002)。两种模型产生的假阳性体积都较小,平均不到真实体积的10%。两种模型的假阴性体积平均约为真实肿瘤体积的20%。观察者间变异性的HD95和DSC分别为2.91毫米和0.89。 结论:CMN的表现明显优于Raidionics模型。两种模型均显示假阳性轮廓描绘的发生率较低,并且在保持剂量覆盖方面具有可接受的稳健性。然而,它们的性能仍不如临床专家。建议在潜在临床应用之前进一步开展模型开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/6228a2325fe0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/58c685ab3bc0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/1c6b6d37995e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/ded7ca592932/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/6228a2325fe0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/58c685ab3bc0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/1c6b6d37995e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/ded7ca592932/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/12357038/6228a2325fe0/gr4.jpg

相似文献

[1]
Clinical evaluation of two glioblastoma delineation methods based on neural networks.

Tech Innov Patient Support Radiat Oncol. 2025-8-6

[2]
Large-scale convolutional neural network for clinical target and multi-organ segmentation in gynecologic brachytherapy via multi-stage learning.

Med Phys. 2025-8

[3]
A novel multimodal adaptive delineation model for primary tumors and lymph node metastases in multi-center nasopharyngeal carcinoma radiotherapy.

Comput Methods Programs Biomed. 2025-10

[4]
A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Med Phys. 2025-7

[5]
Quality assurance in the randomized multicentre phase III trial EORTC-1709-BTG/CCTG CE.8 (MIRAGE) for glioblastoma: Results of the radiotherapy delineation benchmark case procedure.

Radiother Oncol. 2025-8-10

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[8]
"AI tumor delineation for all breathing phases in early-stage NSCLC".

Radiother Oncol. 2025-8-9

[9]
Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures.

AJNR Am J Neuroradiol. 2025-4-2

[10]
Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study.

Eur Radiol Exp. 2024-10-30

本文引用的文献

[1]
The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma.

Phys Imaging Radiat Oncol. 2024-8-5

[2]
Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: a prospective survey.

Front Bioeng Biotechnol. 2024-7-22

[3]
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks.

Sci Rep. 2023-11-2

[4]
Raidionics: an open software for pre- and postoperative central nervous system tumor segmentation and standardized reporting.

Sci Rep. 2023-9-20

[5]
Identifying core MRI sequences for reliable automatic brain metastasis segmentation.

Radiother Oncol. 2023-11

[6]
Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution.

Phys Imaging Radiat Oncol. 2023-6-6

[7]
ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma.

Radiother Oncol. 2023-7

[8]
Evaluation of the HD-GLIO Deep Learning Algorithm for Brain Tumour Segmentation on Postoperative MRI.

Diagnostics (Basel). 2023-1-18

[9]
Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives.

Diagnostics (Basel). 2022-7-31

[10]
Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting.

Front Neurol. 2022-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索