Hansen Anders Traberg, Askglæde Johannes Thestrup, Kallehauge Jesper Folsted, Vittrup Anders Schwartz, Hochreuter Kim, Lukacova Slavka
Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
Tech Innov Patient Support Radiat Oncol. 2025 Aug 6;35:100330. doi: 10.1016/j.tipsro.2025.100330. eCollection 2025 Sep.
BACKGROUND AND PURPOSE: Precise gross tumour volume definition is essential for radiotherapy. Neural networks may improve tumour delineation and reduce manual workload. However, clinical evaluation is crucial for understanding their precision and limitations. MATERIALS AND METHODS: Two neural network-based models were evaluated for glioblastoma delineation in 70 clinical cases: one developed by Cercare Medical Inc (CMN) and the publicly available Raidionics model. Delineations were compared using Hausdorff 95% (HD95) distance, Dice similarity coefficient (DSC) and the prevalence of false-positive and false-negative volumes. Additionally, interobserver variability between clinicians and the dosimetric consequences of differences in delineation were assessed. RESULTS: The Raidionics model achieved a mean HD95 of 5.61 mm, with a 5th and 95th percentile range of 2.13-14.8 mm, and a mean DSC of 0.80 [0.62, 0.92]. The CMN model achieved a mean HD95 of 4.24 mm [2.05, 10.2] and mean DSC of 0.83 [0.65, 0.93]. For both metrics the Wilcoxon rank test showed a significant difference (p < 0.002). Both models produced small false-positive volumes, averaging less than 10 % of the true volume. The false-negative volumes averaged around 20 % of the true tumour volume for both models. The HD95 and DSC of interobserver variability were found to be 2.91 mm and 0.89 respectively. CONCLUSION: The CMN performed significantly better than the Raidionics model. Both models demonstrated a low occurrence of false-positive delineations and acceptable robustness in preserving dose coverage. However, their performance remained inferior to clinical experts. Further model development is recommended before potential clinical implementation.
背景与目的:精确的肿瘤总体积定义对放射治疗至关重要。神经网络可改善肿瘤轮廓描绘并减少人工工作量。然而,临床评估对于了解其精度和局限性至关重要。 材料与方法:在70例临床病例中评估了两种基于神经网络的胶质母细胞瘤轮廓描绘模型:一种由Cercare Medical Inc(CMN)开发,另一种是公开可用的Raidionics模型。使用豪斯多夫95%(HD95)距离、骰子相似系数(DSC)以及假阳性和假阴性体积的发生率对轮廓描绘进行比较。此外,评估了临床医生之间的观察者间变异性以及轮廓描绘差异的剂量学后果。 结果:Raidionics模型的平均HD95为5.61毫米,第5和第95百分位数范围为2.13 - 14.8毫米,平均DSC为0.80[0.62, 0.92]。CMN模型的平均HD95为4.24毫米[2.05, 10.2],平均DSC为0.83[0.65, 0.93]。对于这两个指标,威尔科克森秩和检验显示存在显著差异(p < 0.002)。两种模型产生的假阳性体积都较小,平均不到真实体积的10%。两种模型的假阴性体积平均约为真实肿瘤体积的20%。观察者间变异性的HD95和DSC分别为2.91毫米和0.89。 结论:CMN的表现明显优于Raidionics模型。两种模型均显示假阳性轮廓描绘的发生率较低,并且在保持剂量覆盖方面具有可接受的稳健性。然而,它们的性能仍不如临床专家。建议在潜在临床应用之前进一步开展模型开发。
Tech Innov Patient Support Radiat Oncol. 2025-8-6
Comput Methods Programs Biomed. 2025-10
Radiother Oncol. 2025-8-9
Phys Imaging Radiat Oncol. 2024-8-5
Front Bioeng Biotechnol. 2024-7-22
Radiother Oncol. 2023-11
Radiother Oncol. 2023-7
Diagnostics (Basel). 2023-1-18