From the Departments of Radiology (F.R., M.E.K., G.D., G.Z.).
Nuclear Medicine (M.E.K., G.D.), Stanford University, Stanford, California.
AJNR Am J Neuroradiol. 2020 Jun;41(6):980-986. doi: 10.3174/ajnr.A6573. Epub 2020 Jun 4.
Cortical amyloid quantification on PET by using the standardized uptake value ratio is valuable for research studies and clinical trials in Alzheimer disease. However, it is resource intensive, requiring co-registered MR imaging data and specialized segmentation software. We investigated the use of deep learning to automatically quantify standardized uptake value ratio and used this for classification.
Using the Alzheimer's Disease Neuroimaging Initiative dataset, we identified 2582 F-florbetapir PET scans, which were separated into positive and negative cases by using a standardized uptake value ratio threshold of 1.1. We trained convolutional neural networks (ResNet-50 and ResNet-152) to predict standardized uptake value ratio and classify amyloid status. We assessed performance based on network depth, number of PET input slices, and use of ImageNet pretraining. We also assessed human performance with 3 readers in a subset of 100 randomly selected cases.
We have found that 48% of cases were amyloid positive. The best performance was seen for ResNet-50 by using regression before classification, 3 input PET slices, and pretraining, with a standardized uptake value ratio root-mean-square error of 0.054, corresponding to 95.1% correct amyloid status prediction. Using more than 3 slices did not improve performance, but ImageNet initialization did. The best trained network was more accurate than humans (96% versus a mean of 88%, respectively).
Deep learning algorithms can estimate standardized uptake value ratio and use this to classify F-florbetapir PET scans. Such methods have promise to automate this laborious calculation, enabling quantitative measurements rapidly and in settings without extensive image processing manpower and expertise.
通过使用标准化摄取值比(standardized uptake value ratio,SUVr)对 PET 上的皮质淀粉样蛋白进行定量分析,对于阿尔茨海默病的研究和临床试验具有重要价值。然而,这种方法需要大量的资源,需要 co-registered MR 成像数据和专门的分割软件。我们研究了使用深度学习自动量化 SUVr 的方法,并将其用于分类。
我们使用阿尔茨海默病神经影像学倡议(Alzheimer's Disease Neuroimaging Initiative,ADNI)数据集,确定了 2582 例 F-氟比他滨 PET 扫描,通过 SUVr 阈值为 1.1 将其分为阳性和阴性病例。我们训练卷积神经网络(ResNet-50 和 ResNet-152)来预测 SUVr 并对淀粉样蛋白状态进行分类。我们根据网络深度、PET 输入切片数量以及使用 ImageNet 预训练来评估性能。我们还在 100 例随机选择病例的子集中评估了 3 位读者的人类表现。
我们发现 48%的病例为淀粉样蛋白阳性。使用回归前分类、3 个 PET 输入切片和预训练的 ResNet-50 表现最佳,SUVr 均方根误差为 0.054,对应于 95.1%的正确淀粉样蛋白状态预测。使用超过 3 个切片不能提高性能,但使用 ImageNet 初始化可以。经过最佳训练的网络比人类更准确(分别为 96%和 88%的平均值)。
深度学习算法可以估计 F-氟比他滨 PET 扫描的 SUVr,并使用该值对其进行分类。这种方法有希望实现这种繁琐计算的自动化,使快速进行定量测量成为可能,并且无需大量图像处理人力和专业知识。