Wang Hai-Kun, Zhang Yang, Huang Mohong
School of Artificial Intelligence, Chongqing University of Technology, Chongqing, 40400, China.
Chongqing Industrial Big Data Innovation Center Co., Ltd., Chongqing, 40400, China.
Sci Rep. 2022 Aug 2;12(1):13221. doi: 10.1038/s41598-022-17455-x.
This paper proposes a network model framework based on long and short-term memory (LSTM) and conditional random field (CRF) to promote Li-ion battery capacity prediction results. The model uses LSTM to extract temporal features from the data and CRF to build a transfer matrix to enhance temporal feature learning for long serialization prediction of lithium battery feature sequence data. The NASA PCOE lithium battery dataset is selected for the experiments, and control tests on LSTM temporal feature extraction modules, including recurrent neural network (RNN), gated recurrent unit (GRU), bi-directional gated recurrent unit (BiGRU) and bi-directional long and short term memory (BiLSTM) networks, are designed to test the adaptability of the CRF method to different temporal feature extraction modules. Compared with previous Li-ion battery capacity prediction methods, the network model framework proposed in this paper achieves better prediction results in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE) metrics.
本文提出了一种基于长短时记忆(LSTM)和条件随机场(CRF)的网络模型框架,以提升锂离子电池容量预测结果。该模型使用LSTM从数据中提取时间特征,并使用CRF构建转移矩阵,以增强对锂电池特征序列数据长序列预测的时间特征学习。选择NASA PCOE锂电池数据集进行实验,并针对LSTM时间特征提取模块设计了控制测试,包括递归神经网络(RNN)、门控递归单元(GRU)、双向门控递归单元(BiGRU)和双向长短时记忆(BiLSTM)网络,以测试CRF方法对不同时间特征提取模块的适应性。与先前的锂离子电池容量预测方法相比,本文提出的网络模型框架在均方根误差(RMSE)和平均绝对百分比误差(MAPE)指标方面取得了更好的预测结果。