Suppr超能文献

癌症免疫治疗的生物标志物免疫分析网络:癌症免疫监测和分析中心以及癌症免疫数据共享中心(CIMAC-CIDC)。

Network for Biomarker Immunoprofiling for Cancer Immunotherapy: Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC).

机构信息

Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland.

The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California.

出版信息

Clin Cancer Res. 2021 Sep 15;27(18):5038-5048. doi: 10.1158/1078-0432.CCR-20-3241. Epub 2021 Jan 8.

Abstract

PURPOSE

Immunoprofiling to identify biomarkers and integration with clinical trial outcomes are critical to improving immunotherapy approaches for patients with cancer. However, the translational potential of individual studies is often limited by small sample size of trials and the complexity of immuno-oncology biomarkers. Variability in assay performance further limits comparison and interpretation of data across studies and laboratories.

EXPERIMENTAL DESIGN

To enable a systematic approach to biomarker identification and correlation with clinical outcome across trials, the Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC) Network was established through support of the Cancer Moonshot Initiative of the National Cancer Institute (NCI) and the Partnership for Accelerating Cancer Therapies (PACT) with industry partners via the Foundation for the NIH.

RESULTS

The CIMAC-CIDC Network is composed of four academic centers with multidisciplinary expertise in cancer immunotherapy that perform validated and harmonized assays for immunoprofiling and conduct correlative analyses. A data coordinating center (CIDC) provides the computational expertise and informatics platforms for the storage, integration, and analysis of biomarker and clinical data.

CONCLUSIONS

This overview highlights strategies for assay harmonization to enable cross-trial and cross-site data analysis and describes key elements for establishing a network to enhance immuno-oncology biomarker development. These include an operational infrastructure, validation and harmonization of core immunoprofiling assays, platforms for data ingestion and integration, and access to specimens from clinical trials. Published in the same volume are reports of harmonization for core analyses: whole-exome sequencing, RNA sequencing, cytometry by time of flight, and IHC/immunofluorescence.

摘要

目的

免疫分析以鉴定生物标志物,并将其与临床试验结果相结合,对于改善癌症患者的免疫治疗方法至关重要。然而,个体研究的转化潜力往往受到试验样本量小和免疫肿瘤生物标志物复杂性的限制。检测性能的变异性进一步限制了跨研究和实验室对数据的比较和解释。

实验设计

为了能够在临床试验中系统地鉴定生物标志物并将其与临床结果相关联,癌症免疫监测和分析中心以及癌症免疫数据共享(CIMAC-CIDC)网络通过美国国立卫生研究院(NCI)的癌症登月计划和加速癌症治疗伙伴关系(PACT)的支持以及行业合作伙伴通过 NIH 基金会建立。

结果

CIMAC-CIDC 网络由四个学术中心组成,这些中心在癌症免疫治疗方面具有多学科专业知识,可进行验证和协调的免疫分析检测,并进行相关分析。一个数据协调中心(CIDC)为存储、整合和分析生物标志物和临床数据提供计算专业知识和信息学平台。

结论

本文概述了实现检测协调的策略,以支持跨试验和跨站点数据分析,并描述了建立网络以增强免疫肿瘤生物标志物开发的关键要素。这些要素包括操作基础设施、核心免疫分析检测的验证和协调、数据摄取和整合的平台,以及从临床试验获得标本的途径。在同一卷中还发表了核心分析的协调报告:全外显子测序、RNA 测序、飞行时间流式细胞术和 IHC/免疫荧光。

相似文献

8
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

4
Ten challenges and opportunities in computational immuno-oncology.计算免疫肿瘤学的十大挑战与机遇。
J Immunother Cancer. 2024 Oct 26;12(10):e009721. doi: 10.1136/jitc-2024-009721.

本文引用的文献

1
Immuno-oncology drug development goes global.免疫肿瘤学药物研发走向全球。
Nat Rev Drug Discov. 2019 Nov;18(12):899-900. doi: 10.1038/d41573-019-00167-9.
4
The anatomy of single cell mass cytometry data.单细胞质量细胞术数据的解剖。
Cytometry A. 2019 Feb;95(2):156-172. doi: 10.1002/cyto.a.23621. Epub 2018 Oct 2.
5
The Partnership for Accelerating Cancer Therapies.癌症治疗加速合作组织
Cancer J. 2018 May/Jun;24(3):111-114. doi: 10.1097/PPO.0000000000000321.
7
Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA.通过循环肿瘤 DNA 早期评估肺癌免疫治疗反应。
Clin Cancer Res. 2018 Apr 15;24(8):1872-1880. doi: 10.1158/1078-0432.CCR-17-1341. Epub 2018 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验