Suppr超能文献

建模选择对建模结果的影响:西班牙加泰罗尼亚地区COVID-19传播与环境条件之间关联的时空研究

The impact of modelling choices on modelling outcomes: a spatio-temporal study of the association between COVID-19 spread and environmental conditions in Catalonia (Spain).

作者信息

Briz-Redón Álvaro

机构信息

Statistics Office, City Council of València, Valencia, Spain.

出版信息

Stoch Environ Res Risk Assess. 2021;35(8):1701-1713. doi: 10.1007/s00477-020-01965-z. Epub 2021 Jan 3.

Abstract

The choices that researchers make while conducting a statistical analysis usually have a notable impact on the results. This fact has become evident in the ongoing research of the association between the environment and the evolution of the coronavirus disease 2019 (COVID-19) pandemic, in light of the hundreds of contradictory studies that have already been published on this issue in just a few months. In this paper, a COVID-19 dataset containing the number of daily cases registered in the regions of Catalonia (Spain) since the start of the pandemic to the end of August 2020 is analysed using statistical models of diverse levels of complexity. Specifically, the possible effect of several environmental variables (solar exposure, mean temperature, and wind speed) on the number of cases is assessed. Thus, the first objective of the paper is to show how the choice of a certain type of statistical model to conduct the analysis can have a severe impact on the associations that are inferred between the covariates and the response variable. Secondly, it is shown how the use of spatio-temporal models accounting for the nature of the data allows understanding the evolution of the pandemic in space and time. The results suggest that even though the models fitted to the data correctly capture the evolution of COVID-19 in space and time, determining whether there is an association between the spread of the pandemic and certain environmental conditions is complex, as it is severely affected by the choice of the model.

摘要

研究人员在进行统计分析时所做的选择通常会对结果产生显著影响。鉴于在短短几个月内就已发表了数百项关于此问题的相互矛盾的研究,这一事实在当前关于环境与2019冠状病毒病(COVID-19)大流行演变之间关联的研究中已变得显而易见。在本文中,使用不同复杂程度的统计模型对一个COVID-19数据集进行了分析,该数据集包含自疫情开始至2020年8月底西班牙加泰罗尼亚地区每日登记的病例数。具体而言,评估了几个环境变量(日照、平均温度和风速)对病例数的可能影响。因此,本文的首要目标是展示选择某种类型的统计模型进行分析如何会对协变量与响应变量之间推断出的关联产生严重影响。其次,展示了使用考虑数据性质的时空模型如何有助于理解大流行在空间和时间上的演变。结果表明,尽管拟合数据的模型正确地捕捉了COVID-19在空间和时间上的演变,但确定大流行传播与某些环境条件之间是否存在关联是复杂的,因为它受到模型选择的严重影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f96d/7778699/eb6fdd0b8f68/477_2020_1965_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验