Suppr超能文献

利用化学传输模型输出集合改进美国地表颗粒物预报:1. 非农村地区基于地面观测的偏差校正

Improving Surface PM Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 1. Bias Correction With Surface Observations in Nonrural Areas.

作者信息

Zhang Huanxin, Wang Jun, García Lorena Castro, Ge Cui, Plessel Todd, Szykman James, Murphy Benjamin, Spero Tanya L

机构信息

Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA, USA.

Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA, USA.

出版信息

J Geophys Res Atmos. 2020 Jul 22;125(14). doi: 10.1029/2019JD032293.

Abstract

This work is the first of a two-part study that aims to develop a computationally efficient bias correction framework to improve surface PM forecasts in the United States. Here, an ensemble-based Kalman filter (KF) technique is developed primarily for nonrural areas with approximately 500 surface observation sites for PM and applied to three (GEOS-Chem, WRF-Chem, and WRF-CMAQ) chemical transport model (CTM) hindcast outputs for June 2012. While all CTMs underestimate daily surface PM mass concentration by 20-50%, KF correction is effective for improving each CTM forecast. Subsequently, two ensemble methods are formulated: (1) the arithmetic mean ensemble (AME) that equally weights each model and (2) the optimized ensemble (OPE) that calculates the individual model weights by minimizing the least-square errors. While the OPE shows superior performance than the AME, the combination of either the AME or the OPE with a KF performs better than the OPE alone, indicating the effectiveness of the KF technique. Overall, the combination of a KF with the OPE shows the best results. Lastly, the Successive Correction Method (SCM) was applied to spread the bias correction from model grids with surface PM observations to the grids lacking ground observations by using a radius of influence of 125 km derived from surface observations, which further improves the forecast of surface PM at the national scale. Our findings provide the foundation for the second part of this study that uses satellite-based aerosol optical depth (AOD) products to further improve the forecast of surface PM in rural areas by performing statistical analysis of model output.

摘要

这项工作是一项分为两部分的研究中的第一项,旨在开发一个计算效率高的偏差校正框架,以改善美国地面颗粒物(PM)的预报。在这里,主要针对约有500个PM地面观测站点的非农村地区开发了一种基于集合的卡尔曼滤波器(KF)技术,并将其应用于2012年6月的三个化学传输模型(CTM)(GEOS-Chem、WRF-Chem和WRF-CMAQ)的事后分析输出。虽然所有CTM都将每日地面PM质量浓度低估了20%-50%,但KF校正对于改善每个CTM的预报是有效的。随后,制定了两种集合方法:(1)对每个模型同等加权的算术平均集合(AME)和(2)通过最小化最小二乘误差来计算单个模型权重的优化集合(OPE)。虽然OPE表现优于AME,但AME或OPE与KF的组合比单独的OPE表现更好,这表明了KF技术的有效性。总体而言,KF与OPE的组合显示出最佳结果。最后应用逐次校正法(SCM),利用从地面观测得出的125公里影响半径,将偏差校正从有地面PM观测的模型网格扩展到缺乏地面观测的网格,这进一步改善了全国范围内地面PM的预报。我们的研究结果为这项研究的第二部分奠定了基础,该部分将通过对模型输出进行统计分析,利用基于卫星的气溶胶光学厚度(AOD)产品进一步改善农村地区地面PM的预报。

相似文献

引用本文的文献

本文引用的文献

2
Why do Models Overestimate Surface Ozone in the Southeastern United States?为何模型高估了美国东南部的地表臭氧?
Atmos Chem Phys. 2016;16(21):13561-13577. doi: 10.5194/acp-16-13561-2016. Epub 2016 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验