Suppr超能文献

代谢组学和蛋白质组学时代坏死性小肠结肠炎预测与早期诊断的新兴生物标志物

Emerging Biomarkers for Prediction and Early Diagnosis of Necrotizing Enterocolitis in the Era of Metabolomics and Proteomics.

作者信息

Agakidou Eleni, Agakidis Charalampos, Gika Helen, Sarafidis Kosmas

机构信息

1st Department of Neonatology, Faculty of Medicine, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.

1st Department of Pediatrics, Faculty of Medicine, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.

出版信息

Front Pediatr. 2020 Dec 8;8:602255. doi: 10.3389/fped.2020.602255. eCollection 2020.

Abstract

Necrotizing Enterocolitis (NEC) is a catastrophic disease affecting predominantly premature infants and is characterized by high mortality and serious long-term consequences. Traditionally, diagnosis of NEC is based on clinical and radiological findings, which, however, are non-specific for NEC, thus confusing differential diagnosis of other conditions such as neonatal sepsis and spontaneous intestinal perforation. In addition, by the time clinical and radiological findings become apparent, NEC has already progressed to an advanced stage. During the last three decades, a lot of research has focused on the discovery of biomarkers, which could accurately predict and make an early diagnosis of NEC. Biomarkers used thus far in clinical practice include acute phase proteins, inflammation mediators, and molecules involved in the immune response. However, none has been proven accurate enough to predict and make an early diagnosis of NEC or discriminate clinical from surgical NEC or other non-NEC gastrointestinal diseases. Complexity of mechanisms involved in NEC pathogenesis, which remains largely poorly elucidated, could partly explain the unsatisfactory diagnostic performance of the existing NEC biomarkers. More recently applied technics can provide important insight into the pathophysiological mechanisms underlying NEC but can also aid the detection of potentially predictive, early diagnostic, and prognostic biomarkers. Progress in omics technology has allowed for the simultaneous measurement of a large number of proteins, metabolic products, lipids, and genes, using serum/plasma, urine, feces, tissues, and other biological specimens. This review is an update of current data on emerging NEC biomarkers detected using proteomics and metabolomics, further discussing limitations and future perspectives in prediction and early diagnosis of NEC.

摘要

坏死性小肠结肠炎(NEC)是一种主要影响早产儿的灾难性疾病,其特点是死亡率高且有严重的长期后果。传统上,NEC的诊断基于临床和影像学表现,然而,这些表现对NEC并不具有特异性,因此混淆了诸如新生儿败血症和自发性肠穿孔等其他病症的鉴别诊断。此外,当临床和影像学表现明显时,NEC已经进展到晚期。在过去三十年中,许多研究都集中在生物标志物的发现上,这些生物标志物可以准确预测并早期诊断NEC。目前临床实践中使用的生物标志物包括急性期蛋白、炎症介质和参与免疫反应的分子。然而,尚未有足够准确的生物标志物能够预测并早期诊断NEC,或区分临床型与外科型NEC或其他非NEC胃肠道疾病。NEC发病机制的复杂性在很大程度上仍未得到充分阐明,这可能部分解释了现有NEC生物标志物诊断性能不尽人意的原因。最近应用的技术可以为NEC潜在的病理生理机制提供重要见解,也有助于检测潜在的预测性、早期诊断性和预后性生物标志物。组学技术的进步使得能够使用血清/血浆、尿液、粪便、组织和其他生物标本同时测量大量蛋白质、代谢产物、脂质和基因。本综述是关于使用蛋白质组学和代谢组学检测到的新兴NEC生物标志物的最新数据更新,进一步讨论了NEC预测和早期诊断中的局限性及未来展望。

相似文献

2
Metabolomics in necrotizing enterocolitis: the state of the art.代谢组学在坏死性小肠结肠炎中的研究进展。
Expert Rev Mol Diagn. 2016 Oct;16(10):1053-1058. doi: 10.1080/14737159.2016.1211933. Epub 2016 Jul 22.
5
A pilot case-control study of urine metabolomics in preterm neonates with necrotizing enterocolitis.早产儿坏死性小肠结肠炎尿液代谢组学的初步病例对照研究。
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Jun 1;1117:10-21. doi: 10.1016/j.jchromb.2019.04.019. Epub 2019 Apr 8.
7
[Analysis of clinical characteristics of necrotizing enterocolitis in term infants].[足月儿坏死性小肠结肠炎的临床特征分析]
Zhonghua Yi Xue Za Zhi. 2016 Jun 14;96(22):1766-72. doi: 10.3760/cma.j.issn.0376-2491.2016.22.012.
10
Biomarkers of necrotizing enterocolitis: a review of literature.坏死性小肠结肠炎的生物标志物:文献综述
J Matern Fetal Neonatal Med. 2018 Nov;31(22):3051-3064. doi: 10.1080/14767058.2017.1361925. Epub 2017 Aug 9.

引用本文的文献

本文引用的文献

9
The Urinary Metabolome of Healthy Newborns.健康新生儿的尿液代谢组
Metabolites. 2020 Apr 23;10(4):165. doi: 10.3390/metabo10040165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验