Suppr超能文献

基于深度学习的多染色肾活检病理图像肾小球实例分割方法。

A Deep Learning-Based Approach for Glomeruli Instance Segmentation from Multistained Renal Biopsy Pathologic Images.

机构信息

Electron Microscope Lab, Peking University People's Hospital, Beijing, China.

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China.

出版信息

Am J Pathol. 2021 Aug;191(8):1431-1441. doi: 10.1016/j.ajpath.2021.05.004.

Abstract

Glomeruli instance segmentation from pathologic images is a fundamental step in the automatic analysis of renal biopsies. Glomerular histologic manifestations vary widely among diseases and cases, and several special staining methods are necessary for pathologic diagnosis. A robust model is needed to segment and classify glomeruli with different staining methods and apply in cases with various glomerular pathologic changes. Herein, pathologic images from renal biopsy slides stained with three basic special staining methods were used to build the data sets. The snapshot group included 1970 glomeruli from 516 patients, and the whole-slide image group included 8665 glomeruli from 148 patients. Cascade Mask region-based convolutional neural net architecture was trained to detect, classify, and segment glomeruli into three categories: i) GN, structural normal; ii) global sclerosis; and iii) glomerular with other lesions. In the snapshot group, total glomeruli, GN, global sclerosis, and glomerular with other lesions achieved an F1 score of 0.914, 0.896, 0.681, and 0.756, respectively, which were comparable with those in the whole-slide image group (0.940, 0.839, 0.806, and 0.753, respectively). Among the three categories, GN achieved the best instance segmentation effect in both groups, as determined by average precision, average recall, F1 score, and Mask mean Intersection over Union. The present model segments and classifies multistained glomeruli with efficiency and robustness. It can be applied as the first step for more detailed glomerular histologic analysis.

摘要

肾小球病理图像分割是自动分析肾活检的基本步骤。肾小球的组织学表现因疾病和病例而异,因此需要几种特殊的染色方法进行病理诊断。需要建立一个强大的模型来分割和分类具有不同染色方法的肾小球,并应用于具有各种肾小球病理变化的病例中。在此,使用三种基本特殊染色方法染色的肾活检切片的病理图像来构建数据集。快照组包括 516 名患者的 1970 个肾小球,全切片图像组包括 148 名患者的 8665 个肾小球。级联掩模区域卷积神经网络架构用于检测、分类和分割肾小球,将其分为三类:i)GN,结构正常;ii)全球硬化;iii)肾小球有其他病变。在快照组中,总肾小球、GN、全球硬化和肾小球有其他病变的 F1 评分分别为 0.914、0.896、0.681 和 0.756,与全切片图像组(0.940、0.839、0.806 和 0.753)相当。在这三个类别中,GN 在两个组中的实例分割效果最好,其平均精度、平均召回率、F1 评分和掩模平均交并率均有所体现。本模型具有高效和稳健的多染色肾小球分割和分类能力。它可以作为更详细的肾小球组织学分析的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验