Suppr超能文献

利用先进的特征提取技术改进肾活检分割。

Leveraging advanced feature extraction for improved kidney biopsy segmentation.

作者信息

Wajeeh Us Sima Muhammad, Wang Chengliang, Arshad Muhammad, Shaikh Jamshed Ali, Alkhalaf Salem, Alturise Fahad

机构信息

Department of Computer Science and Technology, College of Computer Science, Chongqing University, Chongqing, China.

Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia.

出版信息

Front Med (Lausanne). 2025 Jun 18;12:1591999. doi: 10.3389/fmed.2025.1591999. eCollection 2025.

Abstract

Medical image segmentation faces critical challenges in renal histopathology due to the intricate morphology of glomeruli characterized by small size, fragmented structures, and low contrast against complex tissue backgrounds. While the Segment Anything Model (SAM) excels in natural image segmentation, its direct application to medical imaging underperforms due to (1) insufficient preservation of fine-grained anatomical details, (2) computational inefficiency on gigapixel whole-slide images (WSIs), and (3) poor adaptation to domain-specific features like staining variability and sparse annotations. To address these limitations, we propose V-SAM, a novel framework enhancing SAM's architecture through three key innovations: (1) a V-shaped adapter that preserves spatial hierarchies via multi-scale skip connections, recovering capillary-level details lost in SAM's aggressive downsampling; (2) lightweight adapter layers that fine-tune SAM's frozen encoder with fewer trainable parameters, optimizing it for histopathology textures while avoiding catastrophic forgetting; and (3) a dynamic point-prompt mechanism enabling sub-pixel refinement of glomerular boundaries through gradient aware localization. Evaluated on the HuBMAP Hacking the Human Vasculature and Hacking the Kidney datasets, V-SAM achieves state-of-the-art performance, surpassing 89.31%, 97.65% accuracy, 86.17%, 95.54% F1-score respectively. V-SAM sets a new paradigm for adapting foundation models to clinical workflows, with direct applications in chronic kidney disease diagnosis and biomarker discovery. This work bridges the gap between SAM's generalizability and the precision demands of medical imaging, offering a scalable solution for resource constrained healthcare environments.

摘要

由于肾小球形态复杂,尺寸小、结构碎片化且与复杂组织背景对比度低,医学图像分割在肾脏组织病理学中面临严峻挑战。虽然分割一切模型(SAM)在自然图像分割方面表现出色,但由于(1)细粒度解剖细节保留不足,(2)在千兆像素全切片图像(WSI)上计算效率低下,以及(3)对染色变异性和稀疏注释等特定领域特征适应性差,其直接应用于医学成像的效果不佳。为解决这些限制,我们提出了V-SAM,这是一个通过三项关键创新增强SAM架构的新颖框架:(1)一个V形适配器,通过多尺度跳跃连接保留空间层次结构,恢复在SAM激进下采样中丢失的毛细血管级细节;(2)轻量级适配器层,用较少的可训练参数微调SAM的冻结编码器,针对组织病理学纹理进行优化,同时避免灾难性遗忘;(3)一种动态点提示机制,通过梯度感知定位实现肾小球边界的亚像素细化。在HuBMAP破解人类血管系统和破解肾脏数据集上进行评估时,V-SAM实现了领先的性能,准确率分别超过89.31%、97.65%,F1分数分别超过86.17%、95.54%。V-SAM为将基础模型应用于临床工作流程树立了新范例,可直接应用于慢性肾脏病诊断和生物标志物发现。这项工作弥合了SAM的通用性与医学成像精度要求之间的差距,为资源受限的医疗环境提供了一种可扩展的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验