Suppr超能文献

用于实时自主边缘应用的能量感知型生物启发式脉冲强化学习系统架构。

Energy-aware bio-inspired spiking reinforcement learning system architecture for real-time autonomous edge applications.

作者信息

Okonkwo Joshua Ifeanyi, Abdelfattah Mohamed S, Mirtaheri Peyman, Muhtaroglu Ali

机构信息

Biomedical Engineering MS Program, Oslo Metropolitan University, Oslo, Norway.

Department of Electrical and Computer Engineering, Cornell University, New York, NY, United States.

出版信息

Front Neurosci. 2024 Sep 23;18:1431222. doi: 10.3389/fnins.2024.1431222. eCollection 2024.

Abstract

Mobile, low-cost, and energy-aware operation of Artificial Intelligence (AI) computations in smart circuits and autonomous robots will play an important role in the next industrial leap in intelligent automation and assistive devices. Neuromorphic hardware with spiking neural network (SNN) architecture utilizes insights from biological phenomena to offer encouraging solutions. Previous studies have proposed reinforcement learning (RL) models for SNN responses in the rat hippocampus to an environment where rewards depend on the context. The scale of these models matches the scope and capacity of small embedded systems in the framework of Internet-of-Bodies (IoB), autonomous sensor nodes, and other edge applications. Addressing energy-efficient artificial learning problems in such systems enables smart micro-systems with edge intelligence. A novel bio-inspired RL system architecture is presented in this work, leading to significant energy consumption benefits without foregoing real-time autonomous processing and accuracy requirements of the context-dependent task. The hardware architecture successfully models features analogous to synaptic tagging, changes in the exploration schemes, synapse saturation, and spatially localized task-based activation observed in the brain. The design has been synthesized, simulated, and tested on Intel MAX10 Field-Programmable Gate Array (FPGA). The problem-based bio-inspired approach to SNN edge architectural design results in 25X reduction in average power compared to the state-of-the-art for a test with real-time context learning and 30 trials. Furthermore, 940x lower energy consumption is achieved due to improvement in the execution time.

摘要

人工智能(AI)计算在智能电路和自主机器人中的移动性、低成本以及能源感知操作,将在智能自动化和辅助设备的下一次工业飞跃中发挥重要作用。具有脉冲神经网络(SNN)架构的神经形态硬件利用生物学现象的见解提供了令人鼓舞的解决方案。先前的研究针对大鼠海马体中SNN对奖励取决于环境的响应提出了强化学习(RL)模型。这些模型的规模与体域网(IoB)、自主传感器节点和其他边缘应用框架中小型嵌入式系统的范围和能力相匹配。解决此类系统中的节能人工学习问题可实现具有边缘智能的智能微系统。本文提出了一种新颖的受生物启发的RL系统架构,在不放弃上下文相关任务的实时自主处理和准确性要求的情况下,带来了显著的能耗优势。该硬件架构成功地模拟了类似于突触标记、探索方案变化、突触饱和以及大脑中观察到的基于空间局部任务的激活等特征。该设计已在英特尔MAX10现场可编程门阵列(FPGA)上进行了综合、模拟和测试。基于问题的受生物启发的SNN边缘架构设计方法,在进行实时上下文学习和30次试验的测试中,与现有技术相比,平均功耗降低了25倍。此外,由于执行时间的改进,能耗降低了940倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验