文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介孔 Mg 和 Sr 掺杂纳米粒子的合成与表征及其在有前途的组织工程应用中的莫西沙星药物传递。

Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications.

机构信息

School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.

出版信息

Int J Mol Sci. 2021 Jan 8;22(2):577. doi: 10.3390/ijms22020577.


DOI:10.3390/ijms22020577
PMID:33430065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7827177/
Abstract

Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol-gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.

摘要

介孔硅基纳米粒子(MSNs)因其有序的孔结构而被认为是有前途的药物载体,这种结构允许高药物负载和释放能力。MSNs 中 Si 和 Ca 的溶解可以触发干细胞向细胞外基质钙化的成骨分化,而 Mg 和 Sr 则构成了骨生物学和代谢的关键元素。本研究的目的是合成和表征共掺杂 Ca、Mg 和 Sr 的溶胶-凝胶衍生的 MSNs。通过 X 射线衍射(XRD)、带有能量色散 X 射线分析(SEM/EDX)的扫描电子显微镜、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X 射线荧光光谱(XRF)、Brunauer-Emmett-Teller 和 Brunauer-Joyner-Halenda(BET/BJH)、动态光散射(DLS)和 ζ-电位测量对其物理化学性质进行了研究。采用高效液相色谱法(HPLC)评估了莫西沙星的负载和释放曲线,研究了其在不同浓度下对人牙周膜成纤维细胞的细胞活力和与人红细胞(RBC)接触的溶血活性。掺杂的 MSNs 通常保留其结构特征,而不同的组成则影响粒径、溶血活性和莫西沙星的负载/释放曲线。所有共掺杂的 MSNs 在浸入模拟体液(SBF)后,表面均形成了羟基碳酸磷灰石,并促进了线粒体活性和细胞增殖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/26a48b95e099/ijms-22-00577-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/7e2374de95e0/ijms-22-00577-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/8d26b2c0c09e/ijms-22-00577-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/2ca91d3cb918/ijms-22-00577-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/e2781d19b88f/ijms-22-00577-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/3a4a942d3010/ijms-22-00577-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/d490b66a1b88/ijms-22-00577-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/e07de93b457d/ijms-22-00577-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/da42b70741c1/ijms-22-00577-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/2b3347e74012/ijms-22-00577-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/26a48b95e099/ijms-22-00577-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/7e2374de95e0/ijms-22-00577-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/8d26b2c0c09e/ijms-22-00577-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/2ca91d3cb918/ijms-22-00577-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/e2781d19b88f/ijms-22-00577-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/3a4a942d3010/ijms-22-00577-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/d490b66a1b88/ijms-22-00577-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/e07de93b457d/ijms-22-00577-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/da42b70741c1/ijms-22-00577-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/2b3347e74012/ijms-22-00577-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/7827177/26a48b95e099/ijms-22-00577-g010.jpg

相似文献

[1]
Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications.

Int J Mol Sci. 2021-1-8

[2]
Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

Colloids Surf B Biointerfaces. 2015-4-29

[3]
Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells.

Mater Sci Eng C Mater Biol Appl. 2017-8-1

[4]
Thermo- and pH-responsive targeted lipid-coated mesoporous nano silica platform for dual delivery of paclitaxel and gemcitabine to overcome HER2-positive breast cancer.

Int J Pharm. 2023-12-15

[5]
Fabrication of Chitosan-coated Mesoporous Silica Nanoparticles Bearing Rosuvastatin as a Drug Delivery System.

Curr Drug Deliv. 2022

[6]
Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications.

J Mater Sci Mater Med. 2018-5-8

[7]
Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems.

Colloids Surf B Biointerfaces. 2019-7-8

[8]
The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length via the disulfide bond linker and drug release in glutathione medium.

J Biomater Sci Polym Ed. 2016

[9]
Novel functional mesoporous silica nanoparticles loaded with Vitamin E acetate as smart platforms for pH responsive delivery with high bioactivity.

J Colloid Interface Sci. 2017-7-8

[10]
Potassium-doped mesoporous bioactive glass: Synthesis, characterization and evaluation of biomedical properties.

Mater Sci Eng C Mater Biol Appl. 2017-6-1

引用本文的文献

[1]
Sodium alginate hydrogel loaded with upconversion nanoparticles and magnesium ions enhances bone regeneration and photodynamic tumor therapy.

Front Pharmacol. 2025-3-10

[2]
An Enhanced Bioactive Glass Composition with Improved Thermal Stability and Sinterability.

Materials (Basel). 2024-12-17

[3]
Multifunctional Sr,Mg-Doped Mesoporous Bioactive Glass Nanoparticles for Simultaneous Bone Regeneration and Drug Delivery.

Int J Mol Sci. 2024-7-24

[4]
Association Between Serum Magnesium Levels and Glycemic Control in Type 2 Diabetes.

Diabetes Metab Syndr Obes. 2024-7-26

[5]
Nanoparticles in Periodontitis Therapy: A Review of the Current Situation.

Int J Nanomedicine. 2024

[6]
Effect of Modified Bioceramic Mineral Trioxide Aggregate Cement with Mesoporous Nanoparticles on Human Gingival Fibroblasts.

Curr Issues Mol Biol. 2024-3-30

[7]
Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment.

Curr Issues Mol Biol. 2024-1-5

[8]
Electrospun core-sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications.

Front Bioeng Biotechnol. 2023-7-26

[9]
Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations.

Int J Mol Sci. 2023-3-28

[10]
Composite PLGA-Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration.

Pharmaceutics. 2023-3-2

本文引用的文献

[1]
Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular bioactivity.

RSC Adv. 2019-4-17

[2]
Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches.

Pharmaceutics. 2020-5-6

[3]
Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes.

Chem Biol Interact. 2020-2-4

[4]
Multifunctional zinc ion doped sol - gel derived mesoporous bioactive glass nanoparticles for biomedical applications.

Bioact Mater. 2019-10-27

[5]
Topical Host-Modulating Therapy for Periodontal Regeneration: A Systematic Review and Meta-Analysis.

Tissue Eng Part B Rev. 2019-11-7

[6]
Effect of ethanol/TEOS ratios and amount of ammonia on the properties of copper-doped calcium silicate nanoceramics.

J Mater Sci Mater Med. 2019-8-22

[7]
Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents.

Polymers (Basel). 2017-10-4

[8]
Antibiotic penetration into bone and joints: An updated review.

Int J Infect Dis. 2019-2-14

[9]
Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration.

J Funct Biomater. 2019-1-2

[10]
Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning.

Materials (Basel). 2018-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索