Suppr超能文献

负载nHA和辛伐他汀的电纺核壳聚己内酯纳米纤维及其潜在的骨再生应用。

Electrospun core-sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications.

作者信息

Qian Chenghui, Liu Yubo, Chen Si, Zhang Chenyang, Chen Xiaohong, Liu Yuehua, Liu Ping

机构信息

Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2023 Jul 26;11:1205252. doi: 10.3389/fbioe.2023.1205252. eCollection 2023.

Abstract

Drugs and biocompatible nanoparticles have raised significant potential in advancing the bone regeneration. Electrospinning technology enables the full realization of the value of drugs and nanoparticles. In this study, we have successfully fabricated core-sheath nanofibers solely composed of polycaprolactone (PCL) polymer. Simvastatin (SIM) was confined to the core of the nanofibers while nanohydroxyapatite (nHA) was loaded on the nanofiber surface. All the prepared nanofibers exhibited a cylindrical micromorphology, and the core-sheath structure was exploited using a Transmission Electron Microscope. X-ray pattern results indicated that SIM was in an amorphous state within nanofibers, while Fourier Transform InfraRed spectroscopy showed excellent chemical compatibility among SIM, nHA, and PCL. The actual loading of nHA within the nanofiber was determined by a thermogravimetric test due to the high melting point of nHA. Core-sheath nanofibers could release SIM for 672 h, which was attributed to the core-sheath structure. Furthermore, nanofibers loaded with SIM or nHA had a positive impact on cell proliferation, with the core-sheath nanofibers displaying the most favorable cell proliferation behavior. Such a synergistic facilitation strategy based on materials and nanostructure may encourage researchers to exploit new biomedical materials in future.

摘要

药物和生物相容性纳米颗粒在促进骨再生方面具有巨大潜力。静电纺丝技术能够充分实现药物和纳米颗粒的价值。在本研究中,我们成功制备了仅由聚己内酯(PCL)聚合物组成的核壳纳米纤维。辛伐他汀(SIM)被包裹在纳米纤维的核中,而纳米羟基磷灰石(nHA)负载在纳米纤维表面。所有制备的纳米纤维均呈现出圆柱形微观形态,并使用透射电子显微镜观察到了核壳结构。X射线衍射结果表明,SIM在纳米纤维中呈无定形状态,而傅里叶变换红外光谱显示SIM、nHA和PCL之间具有良好的化学相容性。由于nHA熔点高,通过热重测试确定了纳米纤维中nHA的实际负载量。核壳纳米纤维可释放SIM达672小时,这归因于核壳结构。此外,负载SIM或nHA的纳米纤维对细胞增殖有积极影响,其中核壳纳米纤维表现出最有利的细胞增殖行为。这种基于材料和纳米结构的协同促进策略可能会鼓励研究人员在未来开发新型生物医学材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cad3/10410860/a1dfa8e07009/fbioe-11-1205252-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验