Limongi Roberto, Jeon Peter, Théberge Jean, Palaniyappan Lena
Robarts Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada.
Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada.
Antioxidants (Basel). 2021 Jan 8;10(1):75. doi: 10.3390/antiox10010075.
Oxidative stress plays a key role in the pathophysiology of schizophrenia. While free radicals produced by glutamatergic excess and oxidative metabolism have damaging effects on brain tissue, antioxidants such as glutathione (GSH) counteract these effects. The interaction between glutamate (GLU) and GSH is centered on N-Methyl-D-aspartate (NMDA) receptors. GSH levels increase during glutamate-mediated excitatory neuronal activity, which serves as a checkpoint to protect neurons from oxidative damage and reduce excitatory overdrive. We studied the possible influence of GSH on the glutamate-mediated dysconnectivity in 19 first-episode schizophrenia (FES) patients and 20 healthy control (HC) subjects. Using ultra-high field (7 Tesla) magnetic resonance spectroscopy (MRS) and resting state functional magnetic resonance imaging (fMRI), we measured GSH and GLU levels in the dorsal anterior cingulate cortex (dACC) and blood-oxygenation level-dependent activity in both the dACC and the anterior insula (AI). Using spectral dynamic causal modeling, we found that when compared to HCs, in FES patients inhibitory activity within the dACC decreased with GLU levels whereas inhibitory activity in both the dACC and AI increased with GSH levels. Our model explains how higher levels of GSH can reverse the downstream pathophysiological effects of a hyperglutamatergic state in FES. This provides an initial insight into the possible mechanistic effect of antioxidant system on the excitatory overdrive in the salience network (dACC-AI).
氧化应激在精神分裂症的病理生理学中起关键作用。虽然谷氨酸能过量和氧化代谢产生的自由基对脑组织有损害作用,但抗氧化剂如谷胱甘肽(GSH)可抵消这些影响。谷氨酸(GLU)和GSH之间的相互作用集中在N-甲基-D-天冬氨酸(NMDA)受体上。在谷氨酸介导的兴奋性神经元活动期间,GSH水平会升高,这起到了保护神经元免受氧化损伤并减少兴奋性过度驱动的检查点作用。我们研究了GSH对19例首发精神分裂症(FES)患者和20例健康对照(HC)受试者中谷氨酸介导的神经连接障碍的可能影响。使用超高场(7特斯拉)磁共振波谱(MRS)和静息态功能磁共振成像(fMRI),我们测量了背侧前扣带回皮质(dACC)中的GSH和GLU水平以及dACC和前岛叶(AI)中的血氧水平依赖活动。使用频谱动态因果模型,我们发现与HC相比,在FES患者中,dACC内的抑制性活动随GLU水平降低,而dACC和AI中的抑制性活动随GSH水平升高。我们的模型解释了较高水平的GSH如何能够逆转FES中高谷氨酸能状态的下游病理生理效应。这为抗氧化系统对显著性网络(dACC-AI)中兴奋性过度驱动的可能机制作用提供了初步见解。