Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.
Renaissance Computing Institute, University of North Carolina, Chapel Hill, North Carolina.
Biol Psychiatry. 2020 Aug 15;88(4):326-336. doi: 10.1016/j.biopsych.2020.03.016. Epub 2020 Apr 2.
Converging evidence implicates redox dysregulation as a pathological mechanism driving the emergence of psychosis. Increased oxidative damage and decreased capacity of intracellular redox modulatory systems are consistent findings in persons with schizophrenia as well as in persons at clinical high risk who subsequently developed frank psychosis. Levels of glutathione, a key regulator of cellular redox status, are reduced in the medial prefrontal cortex, striatum, and thalamus in schizophrenia. In humans with schizophrenia and in rodent models recapitulating various features of schizophrenia, redox dysregulation is linked to reductions of parvalbumin containing gamma-aminobutyric acid (GABA) interneurons and volumes of their perineuronal nets, white matter abnormalities, and microglia activation. Importantly, the activity of transcription factors, kinases, and phosphatases regulating diverse aspects of neurodevelopment and synaptic plasticity varies according to cellular redox state. Molecules regulating interneuron function under redox control include NMDA receptor subunits GluN1 and GluN2A as well as KEAP1 (regulator of transcription factor NRF2). In a rodent schizophrenia model characterized by impaired glutathione synthesis, the Gclm knockout mouse, oxidative stress activated MMP9 (matrix metalloprotease 9) via its redox-responsive regulatory sites, causing a cascade of molecular events leading to microglia activation, perineural net degradation, and impaired NMDA receptor function. Molecular pathways under redox control are implicated in the etiopathology of schizophrenia and are attractive drug targets for individualized drug therapy trials in the contexts of prevention and treatment of psychosis.
越来越多的证据表明,氧化还原失调是导致精神病发生的病理机制。氧化损伤增加和细胞内氧化还原调节系统能力下降是精神分裂症患者以及随后出现明显精神病的临床高风险人群的一致发现。谷胱甘肽是细胞氧化还原状态的主要调节剂,其水平在精神分裂症患者的内侧前额叶皮层、纹状体和丘脑降低。在患有精神分裂症的人类和模拟各种精神分裂症特征的啮齿动物模型中,氧化还原失调与包含 GABA 神经元的 Parvalbumin 减少以及它们的神经周细胞网络体积减少、白质异常和小胶质细胞激活有关。重要的是,调节神经发育和突触可塑性各个方面的转录因子、激酶和磷酸酶的活性根据细胞氧化还原状态而变化。调节神经细胞功能的氧化还原控制分子包括 NMDA 受体亚基 GluN1 和 GluN2A 以及 KEAP1(转录因子 NRF2 的调节剂)。在一种谷胱甘肽合成受损的啮齿动物精神分裂症模型中,Gclm 基因敲除小鼠中,氧化应激通过其氧化还原反应调节位点激活 MMP9(基质金属蛋白酶 9),引发一系列分子事件导致小胶质细胞激活、神经周细胞网络降解和 NMDA 受体功能受损。氧化还原控制下的分子途径与精神分裂症的病因发病机制有关,是预防和治疗精神病个体化药物治疗试验中具有吸引力的药物靶点。