Department of Oncology, Medical Research Council Institute for Radiation Oncology, University of Oxford, Oxford, UK.
Cell Death Differ. 2021 Feb;28(2):522-537. doi: 10.1038/s41418-020-00696-6. Epub 2021 Jan 11.
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
尽管我们对这种疾病的认识最近有了进展,但胶质母细胞瘤(GB)的治疗选择仍然有限,患者的预后仍然不容乐观。使用分子分类器对这种异质性恶性肿瘤进行分层的努力,确定了几种途径中靶向蛋白的频繁改变,包括受体酪氨酸激酶(RTK)和丝裂原活化蛋白激酶(MAPK)信号通路。然而,这些发现并没有改善患者的临床结果。在几乎所有情况下,GB 对标准治疗都产生了抗药性,最近的证据表明,疾病复发可能与一种称为神经胶质瘤干细胞(GSCs)的细胞亚群有关。因此,仍然需要新的治疗策略。E3 泛素连接酶是一个由>700 种蛋白质组成的家族,它们将泛素连接到靶蛋白上,从而产生一系列细胞反应,包括 DNA 修复、生存信号和蛋白质降解。靶蛋白上的泛素修饰多种多样,从单泛素化到多泛素化链和混合链。E3 泛素连接酶决定了底物标记和链延伸的特异性,它们在脑癌发病机制的多个方面具有重要的调节作用。在这篇综述中,我们首先简要总结了 GB 的组织学和分子分类。我们全面描述了 E3 泛素连接酶在 RTK 和 MAPK 以及其他常见改变的致癌和肿瘤抑制信号通路中的作用。我们还描述了 E3 连接酶在维持神经胶质瘤干细胞群体中的作用以及它们在促进对电离辐射(IR)和化疗的耐药性中的作用。最后,我们考虑了我们对 E3 连接酶生物学的了解如何用于未来 GB 的治疗干预,包括使用血脑屏障可渗透的蛋白水解靶向嵌合体(PROTACs)。