Suppr超能文献

利用高效标注的深度学习方法在乳腺 X 线摄影和数字乳腺断层合成术中进行稳健的乳腺癌检测。

Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach.

机构信息

DeepHealth Inc., RadNet AI Solutions, Cambridge, MA, USA.

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Med. 2021 Feb;27(2):244-249. doi: 10.1038/s41591-020-01174-9. Epub 2021 Jan 11.

Abstract

Breast cancer remains a global challenge, causing over 600,000 deaths in 2018 (ref. ). To achieve earlier cancer detection, health organizations worldwide recommend screening mammography, which is estimated to decrease breast cancer mortality by 20-40% (refs. ). Despite the clear value of screening mammography, significant false positive and false negative rates along with non-uniformities in expert reader availability leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography, and these efforts have highlighted two key difficulties: obtaining large amounts of annotated training data and ensuring generalization across populations, acquisition equipment and modalities. Here we present an annotation-efficient deep learning approach that (1) achieves state-of-the-art performance in mammogram classification, (2) successfully extends to digital breast tomosynthesis (DBT; '3D mammography'), (3) detects cancers in clinically negative prior mammograms of patients with cancer, (4) generalizes well to a population with low screening rates and (5) outperforms five out of five full-time breast-imaging specialists with an average increase in sensitivity of 14%. By creating new 'maximum suspicion projection' (MSP) images from DBT data, our progressively trained, multiple-instance learning approach effectively trains on DBT exams using only breast-level labels while maintaining localization-based interpretability. Altogether, our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

摘要

乳腺癌仍然是一个全球性的挑战,在 2018 年导致了超过 60 万人死亡(参考文献)。为了实现更早的癌症检测,全球卫生组织建议进行筛查性乳房 X 光摄影,据估计,这可以降低 20-40%的乳腺癌死亡率(参考文献)。尽管筛查性乳房 X 光摄影具有明显的价值,但由于存在大量的假阳性和假阴性率,以及专家读者的可用性存在不一致性,因此仍然存在提高质量和可及性的机会。为了解决这些局限性,最近人们对将深度学习应用于乳房 X 光摄影产生了浓厚的兴趣,这些努力突出了两个关键的困难:获得大量带注释的训练数据和确保在人群、采集设备和模式上的泛化。在这里,我们提出了一种注释效率高的深度学习方法,(1)在乳房 X 光片分类方面达到了最先进的性能,(2)成功扩展到数字乳房断层合成术(DBT;“3D 乳房 X 光摄影”),(3)在癌症患者的临床阴性先前乳房 X 光片中检测到癌症,(4)很好地泛化到筛查率低的人群,(5)在敏感性方面平均提高了 14%,超过了五名全职乳房成像专家中的五名。通过从 DBT 数据中创建新的“最大怀疑投影”(MSP)图像,我们的渐进式训练、多实例学习方法有效地在 DBT 检查中使用仅基于乳房级别的标签进行训练,同时保持基于定位的可解释性。总之,我们的结果表明,这种软件有希望提高全球范围内筛查性乳房 X 光摄影的准确性和可及性。

相似文献

2
4
6
Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review.
Med Image Anal. 2021 Jul;71:102049. doi: 10.1016/j.media.2021.102049. Epub 2021 Apr 3.
8
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.
Sci Rep. 2019 Aug 29;9(1):12495. doi: 10.1038/s41598-019-48995-4.

引用本文的文献

1
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf440.
2
CLGB-Net: fusion network for identifying local and global information of lesions in digital mammography images.
Front Oncol. 2025 Jul 17;15:1600057. doi: 10.3389/fonc.2025.1600057. eCollection 2025.
3
Comparative analysis of convolutional neural networks and transformer architectures for breast cancer histopathological image classification.
Front Med (Lausanne). 2025 Jun 17;12:1606336. doi: 10.3389/fmed.2025.1606336. eCollection 2025.
4
Ductal Carcinoma In Situ: Non-Mass Enhancement on MRI 10 Years Before Mammographic Microcalcifications.
J Adv Pract Oncol. 2025 May 1;16(3):105-112. doi: 10.6004/jadpro.2025.16.3.3. eCollection 2025 May.
5
The association between mammography reports and women's age using retrospective data form a medical system.
Front Glob Womens Health. 2025 Jun 10;6:1561669. doi: 10.3389/fgwh.2025.1561669. eCollection 2025.
7
Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.
MedComm (2020). 2025 Jun 9;6(6):e70247. doi: 10.1002/mco2.70247. eCollection 2025 Jun.
8
AI in 2D Mammography: Improving Breast Cancer Screening Accuracy.
Medicina (Kaunas). 2025 Apr 26;61(5):809. doi: 10.3390/medicina61050809.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验