DeepHealth Inc., RadNet AI Solutions, Cambridge, MA, USA.
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Nat Med. 2021 Feb;27(2):244-249. doi: 10.1038/s41591-020-01174-9. Epub 2021 Jan 11.
Breast cancer remains a global challenge, causing over 600,000 deaths in 2018 (ref. ). To achieve earlier cancer detection, health organizations worldwide recommend screening mammography, which is estimated to decrease breast cancer mortality by 20-40% (refs. ). Despite the clear value of screening mammography, significant false positive and false negative rates along with non-uniformities in expert reader availability leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography, and these efforts have highlighted two key difficulties: obtaining large amounts of annotated training data and ensuring generalization across populations, acquisition equipment and modalities. Here we present an annotation-efficient deep learning approach that (1) achieves state-of-the-art performance in mammogram classification, (2) successfully extends to digital breast tomosynthesis (DBT; '3D mammography'), (3) detects cancers in clinically negative prior mammograms of patients with cancer, (4) generalizes well to a population with low screening rates and (5) outperforms five out of five full-time breast-imaging specialists with an average increase in sensitivity of 14%. By creating new 'maximum suspicion projection' (MSP) images from DBT data, our progressively trained, multiple-instance learning approach effectively trains on DBT exams using only breast-level labels while maintaining localization-based interpretability. Altogether, our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.
乳腺癌仍然是一个全球性的挑战,在 2018 年导致了超过 60 万人死亡(参考文献)。为了实现更早的癌症检测,全球卫生组织建议进行筛查性乳房 X 光摄影,据估计,这可以降低 20-40%的乳腺癌死亡率(参考文献)。尽管筛查性乳房 X 光摄影具有明显的价值,但由于存在大量的假阳性和假阴性率,以及专家读者的可用性存在不一致性,因此仍然存在提高质量和可及性的机会。为了解决这些局限性,最近人们对将深度学习应用于乳房 X 光摄影产生了浓厚的兴趣,这些努力突出了两个关键的困难:获得大量带注释的训练数据和确保在人群、采集设备和模式上的泛化。在这里,我们提出了一种注释效率高的深度学习方法,(1)在乳房 X 光片分类方面达到了最先进的性能,(2)成功扩展到数字乳房断层合成术(DBT;“3D 乳房 X 光摄影”),(3)在癌症患者的临床阴性先前乳房 X 光片中检测到癌症,(4)很好地泛化到筛查率低的人群,(5)在敏感性方面平均提高了 14%,超过了五名全职乳房成像专家中的五名。通过从 DBT 数据中创建新的“最大怀疑投影”(MSP)图像,我们的渐进式训练、多实例学习方法有效地在 DBT 检查中使用仅基于乳房级别的标签进行训练,同时保持基于定位的可解释性。总之,我们的结果表明,这种软件有希望提高全球范围内筛查性乳房 X 光摄影的准确性和可及性。